
Workload Scheduler
Version 8.6

Scheduling Workload Dynamically

SC23-9856-02

���

Workload Scheduler
Version 8.6

Scheduling Workload Dynamically

SC23-9856-02

���

Note
Before using this information and the product it integrations, read the information in Notices.

This edition applies to version 8 release 6 of IBM Tivoli Workload Scheduler (program number 5698-WSH) and to
all subsequent releases and modifications until otherwise indicated in new editions.

This edition replaces SC23-9856-01.

© Copyright IBM Corporation 2009, 2011.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this guide ix
What is new in this release ix
What is new in this publication ix
Who should read this publication ix
Publications x
Accessibility x
Tivoli technical training. x
Support information x

Chapter 1. Understanding dynamic
workload scheduling 1
Interfaces 2
Authorization and roles. 3

Managing users and roles 5
Authorization with WebSphere global security . . 6

Adding dynamic scheduling capabilities to your
environment 7

Advantages of job types with advanced options . 8
Creating job types with advanced options . . . 10
Return codes 10
Promoting jobs scheduled on dynamic pools . . 11
Adding dynamic capabilities to existing Tivoli
Workload Scheduler jobs 11
A business scenario on dynamic capability . . . 12

A business scenario. 13
The business 13
The challenge. 13
The solution 14

Chapter 2. Using Tivoli Workload
Scheduler variables in dynamic
workload broker jobs 21

Chapter 3. Using variables in jobs . . . 25

Chapter 4. Defining affinity
relationships 27

Chapter 5. Creating Tivoli Workload
Scheduler jobs managed by dynamic
workload broker. 29

Chapter 6. Monitoring and canceling
jobs 31

Chapter 7. Identifying the resources for
jobs 33
Checking physical resources on computers 34

Creating logical resources. 36
Creating resource groups 38

Chapter 8. Writing JSDL definitions
with the Job Brokering Definition
Console 41
Job definitions 43
Resources in the job definition 47
Using variables in job definitions 51
Using JSDL job definition templates 51
Scenarios for creating job definitions 54

Scenario: Creating a job definition using a
computer resource group 55
Scenario: Creating a job definition using a logical
resource group 55
Scenario: Creating a job definition for a job to
run on x86 processors 56
Scenario: Creating a job definition for a script to
run on a specific operating system. 58
Scenario: Alternative operating system
requirements 59

Chapter 9. Submitting and tracking
jobs 61
Submitting jobs with affinity relationships 61

Submitting a job with affinity from the command
line 61

Submitting jobs with variables 62
Submitting a job with variables from the
command line 62

Job statuses 62
Monitoring submitted jobs 63

Chapter 10. Using the command line
interface 67
Command-line configuration file 68
exportserverdata command - downloading the list
of workload broker instances from the database . . 71
importserverdata command - uploading the list of
workload broker instances to the database 73
jobsubmit command - Submitting jobs 74
jobquery command - Performing queries on jobs . . 76
jobdetails command - Viewing details on jobs . . . 80
jobcancel command - Canceling jobs 82
jobstore command - Managing job definitions . . . 83
jobgetexecutionlog command - Viewing job output 85
movehistorydata command - Maintaining the
database tables 86
resource command - Working with resources . . . 88

Using the resource command from an agent . . 96

Notices 97
Trademarks 98

© Copyright IBM Corp. 2009, 2011 iii

||

|
||
||
||
||
||
|
||
||

Index 101

iv IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Figures

1. Resource requirements for the Inventory item
update job 16

2. Matching resources for the day-end jobs 17

3. Optimization instructions for a job 18
4. Computer Search Results page 36
5. Job Brokering Definition Console main page 46

© Copyright IBM Corp. 2009, 2011 v

vi IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Tables

1. Authorized operations by user groups 4
2. Tivoli Workload Scheduler roles. 6
3. Dynamic workload broker roles. 6
4. Day-end jobs and requirements 15
5. Supported Tivoli Workload Scheduler variables

in JSDL definitions. 21

6. Status mapping between dynamic workload
broker and Tivoli Workload Scheduler . . . 31

7. Resource types and properties 42
8. Resource types and properties 47
9. Job statuses and supported operations . . . 62

10. Dynamic workload broker commands. . . . 67

© Copyright IBM Corp. 2009, 2011 vii

viii IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

About this guide

Provides an overview of the guide, with information about changes made to it
since the last release, and who should read it. It also supplies information about
obtaining resources and support from IBM.

This guide explains how to dynamically allocate resources to run your workload
using the services of the dynamic workload broker component of Tivoli Workload
Scheduler.

Dynamic workload broker is an on-demand scheduling infrastructure which
provides dynamic management of your environment.

What is new in this release
Provides information about things that have changed in the product since the last
release.

For information about the new or changed functions in this release, see Tivoli
Workload Automation: Overview, SC32-1256.

For information about the APARs that this release addresses, see the Tivoli
Workload Scheduler Download Document at http://www.ibm.com/support/
docview.wss?rs=672&uid=swg24027501, and Dynamic Workload Console
Download Document at http://www.ibm.com/support/docview.wss?rs=672
&uid=swg24029125.

What is new in this publication
The following section has been added or modified since version 8.5.1:

“Adding dynamic scheduling capabilities to your environment” on page 7 explains
how you can add dynamic scheduling capabilities to your environment to schedule
both existing Tivoli Workload Scheduler jobs and job types with advanced options.

Who should read this publication
Describes the type of user who should read the documentation.

This guide is intended for administrators responsible for defining user roles and
performing high-level tasks and for operators responsible for creating and
submitting jobs.

Readers should be familiar with the following topics:
v Working knowledge of IBM Tivoli Workload Scheduler
v PC and UNIX operating systems
v Graphical and command line interfaces

© Copyright IBM Corp. 2009, 2011 ix

|

|

|
|
|

http://www.ibm.com/support/docview.wss?rs=672&uid=swg24027501
http://www.ibm.com/support/docview.wss?rs=672&uid=swg24027501
http://www.ibm.com/support/docview.wss?rs=672&uid=swg24029125
http://www.ibm.com/support/docview.wss?rs=672&uid=swg24029125

Publications

Full details of Tivoli Workload Automation publications can be found in Tivoli
Workload Automation: Publications. This document also contains information about
the conventions used in the publications.

A glossary of terms used in the product can be found in Tivoli Workload Automation:
Glossary.

Both of these are in the Information Center as separate publications.

Accessibility
Accessibility features help users with a physical disability, such as restricted
mobility or limited vision, to use software products successfully. With this product,
you can use assistive technologies to hear and navigate the interface. You can also
use the keyboard instead of the mouse to operate all features of the graphical user
interface.

For full information with respect to the Dynamic Workload Console, see the
Accessibility Appendix in the Tivoli Workload Scheduler: User's Guide and Reference,
SC32-1274.

Tivoli technical training
For Tivoli® technical training information, refer to the following IBM® Tivoli
Education Web site:

http://www.ibm.com/software/tivoli/education

Support information

If you have a problem with your IBM software, you want to resolve it quickly. IBM
provides the following ways for you to obtain the support you need:

Online
Go to the IBM Software Support site at http://www.ibm.com/software/
support/probsub.html and follow the instructions.

IBM Support Assistant
The IBM Support Assistant (ISA) is a free local software serviceability
workbench that helps you resolve questions and problems with IBM
software products. The ISA provides quick access to support-related
information and serviceability tools for problem determination. To install
the ISA software, go to http://www.ibm.com/software/support/isa.

Troubleshooting Guide
For more information about resolving problems, see the problem
determination information for this product.

For more information about these three ways of resolving problems, see the
appendix on support information in Tivoli Workload Scheduler: Troubleshooting Guide,
SC32-1275.

x IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

http://www.ibm.com/software/tivoli/education
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/probsub.html
http://www.ibm.com/software/support/isa

Chapter 1. Understanding dynamic workload scheduling

Provides an overview of how dynamic workload scheduling works, and the
benefits of using it.

The dynamic workload broker component of Tivoli Workload Scheduler is an
on-demand scheduling infrastructure which provides dynamic management of
your environment. It improves workload coordination, job throughput, and
operations control, and helps to better align IT with business objectives to improve
performance and reduce costs. It optimizes the use of the IT infrastructure by
constantly analyzing your environment to maintain an up-to-date view of the
resources available and matching them to the requirements defined for each job.

The dynamic workload broker Resource Repository in the Tivoli Workload
Scheduler database stores extensive information about the resources available for
running jobs in your environment, as follows:

Physical resources
Hardware and operating system information is collected by a hardware
scan that is regularly run by the Tivoli Workload Scheduler agents. New
resources are automatically discovered and integrated in the scheduling
environment so that jobs can run automatically on these resources.

Logical resources
Logical resources represent resources in your environment that cannot be
discovered by the scan and that might be required when running a job. For
example, logical resources can be set up to represent software licenses. You
can use a task on the Dynamic Workload Console to define the logical
resources that you need to accurately describe the requirements of jobs in
your environment.

To use the dynamic workload broker capability, you must match the Tivoli
Workload Scheduler job definitions with dynamic workload broker job definitions.
A dynamic workload broker job definition contains all the information required to
determine the computer system or systems on which a job could run, any
scheduling and job balancing rules that are to be applied when allocating
resources, timeout limits, and any recovery actions to be taken in case of failure, as
well as the information required to identify and run the application. You write
dynamic workload broker job definitions in Job Submission Description Language
(JSDL) using the Job Brokering Definition Console, an easy-to-use user interface
packaged with the product.

When a job is submitted, dynamic workload broker analyzes job requirements and
evaluates resources based on the job definition. If a job must run on the same
resource as a previously submitted job, you can provide this information during
submission by creating an affinity relationship. After the job is launched, you can
monitor its progress.

Thus, if you do install the dynamic scheduling capability of Tivoli Workload
Scheduler, you successfully enhance the scheduling and choreography capabilities
of Tivoli Workload Scheduler with the dynamic allocation of the best available
resources. The Dynamic Workload Console provides a convenient single-access
point to all Tivoli Workload Scheduler features, including dynamic workload
broker, and allows you to have a complete view of the whole lifecycle of your jobs.

© Copyright IBM Corp. 2009, 2011 1

If a job fails or the required resource does not become available before the timeout
period specified in the job definition expires, the client that submitted it is notified.

Benefits

Dynamic workload broker implements a job scheduling and brokering
infrastructure that provides the following major functions to help you dynamically
manage your business:
v Manages the automatic discovery of computers available in the scheduling

domain with their attributes.
v Manages the matching of jobs to appropriate resources based on job

requirements and resource attributes.
v Manages the job dispatching to target resources, both physical and virtual, that

are capable of running the job.
v Optimizes the use of IT resources.
v Manages resource consumption of a job based on the quantities that it is

planned to use while running.
v Optionally allocates the required quantity exclusively to the job while it is

running.

Interfaces
Dynamic workload broker is a key component of Tivoli Workload Scheduler in the
strategy of providing a scheduling solution that integrates business scheduling and
dynamic on-demand scheduling.

To schedule your workload dynamically, you use the following interfaces:

Master domain manager command line
It is installed automatically when you install the master domain manager.
This command line interface is run only from the workstation serving as
the master domain manager. Using the command line, you can define and
run your workload dynamically. A backup master domain manager
command line also exists on the backup master domain manager.

Dynamic Workload Console
It is a Web-based user interface for managing the Tivoli Workload
Scheduler environment, including the dynamic scheduling objects. You can
use it to:
v Define and manage logical resources
v Write job definitions in native Job Submission Description Language
v Track job instances and computers

You also use the Dynamic Workload Console to manage the lifecycle of
workload.

Job Brokering Definition Console
Is a structured editing tool you use to create and modify Job Submission
Description Language (JSDL) files. These files are saved in the Job
Repository as job definitions and become available for submission. The
JSDL files adhere to the XML syntax and semantics as defined in the JSDL
schema.

You can submit the following types of jobs:
v Tivoli Workload Scheduler jobs, in the form of scripts or executables

2 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

v Extended agent jobs, including jobs based on the access methods supported by
Tivoli Workload Scheduler for Applications

v Job types with advanced options, both those supplied with the product and the
additional types implemented through the custom plug-ins. For example, those
supplied with the product are DB2, file transfer, and web services. Those
implemented through the custom plug-ins are the ones you developed using the
Integration Workbench of the Software Development Kit (SDK). To run these job
types you must also install the Java runtime.

When you submit a job, dynamic workload broker checks the job requirements, the
available resources and their related characteristics, and submits the job to the
resource that best meets the requirements. Load balancing across resource pools is
guaranteed over time. New resources just provisioned are automatically discovered
and integrated in the scheduling environment so that jobs can run automatically on
these resources.

You can also establish an affinity relationship between two or more jobs when you
want them to run on the same resource, for example when the second job must use
the results generated by the previous job. If the resource is not available, the affine
job is held until the resource is available again. You can define affinity between
two or more jobs using the Dynamic Workload Console or the dynamic workload
broker command line interface.

Authorization and roles
This section explains the level of authorization required to perform tasks using
dynamic workload broker. A role represents a certain level of authorization and
includes the tasks appropriate for that level of authorization.

The Dynamic Workload Console is installed on the Tivoli Integrated Portal, an
infrastructure which provides a common administration console for multiple
products.

To access the Dynamic Workload Console Welcome page, do the following:
1. Enter the following address in a supported browser:

http://<server_name>:<port_name>/ibm/console/login

where,

server_name
The fully qualified host name of the master domain manager or backup
master (where the dynamic scheduling capability was enabled).

port_name
The port number you configured for the master domain manager or
backup master running the active dynamic workload broker instance.

2. Enter a supported user name and password.

The Dynamic Workload Console Welcome page displays.

The Dynamic Workload Console is a role-based interface, in which tasks are
enabled or disabled based on the user role and authorization. Depending on the
authorization level of the user logging on to the Tivoli Integrated Portal, some
tasks might not be displayed.

Chapter 1. Understanding dynamic workload scheduling 3

When the Dynamic Workload Console is installed, the following user groups are
created in the Tivoli Integrated Portal:

TDWBAdministrator
The users in this group can perform the following operations from the
Dynamic Workload Console:
v Create logical resources and resource groups, delete, query, suspend, and

resume logical resources, computers, and resource groups.
v Define server connections.
v Define, edit, and delete jobs.
v Query and cancel job instances.
v Define user preferences for the Console.

TDWBConfigurator
The users in this group can perform the following operations in the
Dynamic Workload Console:
v Create logical resources and resource groups, delete, query, suspend, and

resume logical resources, computers, and resource groups.
v Define server connections.
v Define user preferences for the Console.

TDWBDeveloper
The users in this group can perform the following operations in the
Dynamic Workload Console:
v Define server connections.
v Define, edit, and delete jobs.
v Define user preferences for the Console.

TDWBOperator
The users in this group can perform the following operations in the
Dynamic Workload Console:
v Create logical resources and resource groups, delete, query, suspend, and

resume logical resources, computers, and resource groups.
v Define server connections.
v Submit, query and cancel job instances.
v Define user preferences for the Console.

WSClient
This is a WebSphere Application Server role that is automatically defined
with the All authenticated? property set to Yes. It is required to enable
Web services for dynamic workload broker and you must leave it as it is.

Table 1 lists which operations can be performed by each group for each task group
available in the Dynamic Workload Console:

Table 1. Authorized operations by user groups

Supported Operations
TDWB

Administrator
TDWB

Configurator
TDWB

Developer
TDWB

Operator

Scheduling Environment

Define New Logical Resources X X X

Define New Resource Group X X X

Logical Resources X X X

Resource Groups X X X

4 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Table 1. Authorized operations by user groups (continued)

Supported Operations
TDWB

Administrator
TDWB

Configurator
TDWB

Developer
TDWB

Operator

Configuration

Server Connections X X X X

Definitions

Define a New Job X X

Jobs X X X

Tracking

Jobs X X

Computers X X X

Preferences

User Preferences X X X X

For information on adding users, refer to the Tivoli Integrated Portal help.

Managing users and roles
During the Web console installation, new predefined roles and groups are created
in the Tivoli Integrated Portal. These roles determine which console panels are
available to a user, and therefore which activities the user can perform from the
console.

These roles authorize users to access the console panels. The user specified in the
engine connection determines which operations can be run locally on a connected
engine. For example, if the user specified in a Tivoli Workload Scheduler engine
connection is not authorized to run reporting in the Tivoli Workload Scheduler
security file, then, even though the user logged in to the console can access the
reporting panels, they cannot perform reporting operations on that Tivoli Workload
Scheduler engine. For more information about how to configure the security file,
refer to the Tivoli Workload Scheduler: Administration Guide, SC23-9113.

There is a one-to-one relationship between each new role, and the group with the
same name. This means, for example, that all users belonging to the
TWSWEBUIAdministrator group have the TWSWEBUIAdministrator role.

You cannot modify the roles, but you can create new groups where you combine
different roles. For example, you can create a group named my_operators and
assign to it the TWSWEBUIOperator and the TDWBOperators roles so that all
users added to this group can perform operator actions on both Tivoli Workload
Scheduler and dynamic workload broker from the Dynamic Workload Console.

If you do not assign a role to a Tivoli Integrated Portal user, that user, after having
logged in, will not see any entry for Tivoli Workload Scheduler or dynamic
workload broker in the navigation tree.

The following table lists the roles created in the Tivoli Integrated Portal user
registry for accessing the Tivoli Workload Scheduler environments using the
Dynamic Workload Console, and the panels they can access:

Chapter 1. Understanding dynamic workload scheduling 5

Table 2. Tivoli Workload Scheduler roles.

Roles
Tivoli Workload Scheduler panels accessible from the
Navigation Tree

TWSWEBUIAdministrator All panels

TWSWEBUIOperator Dashboard
My Tasks
Workload Tracking
Workload Submission on Request
Workload Forecasting
Preferences

Note: The TWSWEBUIConfigurator role is also needed in
order to work with Workload Forecasting tasks.

TWSWEBUIDeveloper Workload Definition
Preferences

TWSWEBUIAnalyst Reporting
Preferences

TWSWEBUIConfigurator Scheduling Environment
Preferences

The following table lists the roles created in the Tivoli Integrated Portal user
registry for accessing the dynamic workload broker environments using the
Dynamic Workload Console, and the panels they can access:

Table 3. Dynamic workload broker roles.

Roles
Tivoli Dynamic Workload Broker panels accessible from the
Navigation Tree

TDWBAdministrator All panels

TDWBOperator Scheduling Environment
Configuration
Definitions, except Define a New Job
Tracking
Preferences

TDWBDeveloper Configuration
Definitions
Preferences

TDWBConfigurator Scheduling Environment
Configuration
Tracking, except Job Instances
Preferences

Authorization with WebSphere® global security
When dynamic workload broker is installed, corresponding roles are set up on the
WebSphere Application Server. By default, these roles are not used. However, if
you enable global security for the WebSphere Application Server cell where also
dynamic workload broker is installed, the authorization required to perform tasks
from the Dynamic Workload Console is also validated by the WebSphere
Application Server.

When global security is enabled, Dynamic Workload Console users must provide
credentials for accessing the server. These credentials correspond to existing users
defined in the operating system where the WebSphere Application Server resides
or in an LDAP server. A task on the WebSphere Application Server console maps

6 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

these users to the dynamic workload broker roles. Using these mappings,
WebSphere Application Server is able to determine the level of authorization of the
user submitting a request to the server.

For example, the Administrator needs to define John Jones as a TDWBConfigurator
in an environment that uses global security. On the WebSphere Application Server
console, the user conf, has been mapped to the Configurator role. The
Administrator does the following:
1. Creates a new user account for John Jones on the Tivoli Integrated Portal.
2. Assigns the new user to the TDWBConfigurator user group.
3. Provides John Jones with his user name and password to access the Dynamic

Workload Console and the user name conf and its associated password for
connecting to dynamic workload broker.

For more information about assigning user roles on the Tivoli Integrated Portal and
defining user roles from the WebSphere Application Server console, refer to the
Tivoli Workload Scheduler: Administration Guide, SC23-9113.

Adding dynamic scheduling capabilities to your environment
This section explains how you can add dynamic scheduling capabilities to your
environment to schedule both existing Tivoli Workload Scheduler jobs and job
types with advanced options, both those supplied with the product and the
additional types implemented through the custom plug-ins.

Dynamic capabilities help you maintain business policies and ensure service level
agreements by:
v Automatically discovering scheduling environment resources
v Matching job requirements to available resources
v Controlling and optimizing use of resources
v Automatically following resource changes
v Requesting additional resources when needed

You can add dynamic capabilities to your environment by defining a set of
workstation types:

Dynamic agent
A workstation that manages a wide variety of job types, for example,
specific database or FTP jobs, in addition to existing job types. This
workstation is automatically defined and registered in the Tivoli Workload
Scheduler database when you install the dynamic agent. You can group
dynamic agents in pools and dynamic pools.

Pool A workstation that groups a set of dynamic agents with similar hardware
or software characteristics to submit jobs to. Tivoli Workload Scheduler
balances the jobs among the dynamic agents within the pool and
automatically reassigns jobs to available dynamic agents if a dynamic
agent is no longer available. To create a pool of dynamic agents in your
Tivoli Workload Scheduler environment, define a workstation of type pool
hosted by the dynamic workload broker workstation, then select the
dynamic agents you want to add to the pool. You can define the pool
using the Dynamic Workload Console or the composer command.

Dynamic pool
A workstation that groups a set of dynamic agents, which is dynamically

Chapter 1. Understanding dynamic workload scheduling 7

|

|
|
|
|

|
|

|

|

|

|

|

|
|

|
|
|
|
|
|

||
|
|
|
|
|
|
|
|

|
|

defined based on the resource requirements you specify and hosted by the
dynamic workload broker workstation. For example, if you require a
workstation with low CPU usage and Windows installed to run your job,
you specify these requirements using the Dynamic Workload Console or
the composer command. When you save the set of requirements, a new
workstation is automatically created in the Tivoli Workload Scheduler
database. This workstation is hosted by the dynamic workload broker
workstation. This workstation maps all the dynamic agents in your
environment that meet the requirements you specified. The resulting pool
is dynamically updated whenever a new suitable dynamic agent becomes
available. Jobs run on the first workstation in the dynamic pool which
marches all the requirements. Jobs scheduled on this workstation
automatically inherit the requirements defined for the workstation.

For information on how to create pools and dynamic pools using the
Dynamic Workload Console, see the section on creating a pool of agents in
the Tivoli Dynamic Workload Console User's Guide. For more information on
how to create pools and dynamic pools using the composer command, see
the User's Guide and Reference, SC32-1274.

The dynamic agents, pools, and dynamic pools leverage the dynamic functionality
built into Tivoli Workload Scheduler and provide the possibility at run time to
dynamically associate your submitted workload (or part of it) to the best available
resources. You can add dynamic scheduling capabilities to workstations at
installation time. For more information on installing the dynamic agents, see the
section on installing a new agent in the Planning and Installation Guide, SC32-1273.

You can use dynamic agents, pools and dynamic pools to schedule job types with
advanced options. The job types with advanced options include both those
supplied with the product and the additional types implemented through the
custom plug-ins. Both job types run only on dynamic agents, pools, and dynamic
pools. For more information on how to schedule job types with advanced options,
see “Creating job types with advanced options” on page 10. For more information
on how to create custom plug-ins, see Extending Tivoli Workload Automation,
SC14-7623.

You can also use dynamic agents, pools, and dynamic pools to run the jobs you
created for the existing Tivoli Workload Scheduler workstation types. To run these
jobs on the dynamic workstation types, you only have to change the specification
of the workstation where you want the job to run. For more information on how to
schedule existing Tivoli Workload Scheduler jobs, see “Adding dynamic
capabilities to existing Tivoli Workload Scheduler jobs” on page 11.

If you want to leverage the dynamic capability when scheduling job types with
advanced options, you schedule them on pools and dynamic pools, which assign
dynamically the job to the best available resource. If you are interested only in
defining job types with advanced options, without using the dynamic scheduling
capability, you schedule these jobs on a specific dynamic agent, on which the job
runs statically.

Advantages of job types with advanced options
This section describes the advantages you can obtain implementing job types with
advanced options, both those supplied with the product and the additional types
implemented through the custom plug-ins, and schedule them on dynamic agents,
pools and dynamic pools.

8 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|

While the standard Tivoli Workload Scheduler job is a generic script or command,
you can define jobs to perform specific tasks, such as database, file transfer, Java,
and web service operations, using the job types with advanced options available
from the Dynamic Workload Console or the composer command. You can easily
define these job types without having specific skills on the applications where the
job runs.

The job types with advanced options include both those supplied with the product
and the additional types implemented through the custom plug-ins

The following job types with advanced options are available

File transfer jobs
Transfer files to and from a server reachable using FTP, SSH, or other
protocols.

JCL Run a JCL job, either by reference or by definition. If you define a job by
reference, you provide a reference the job you want to submit, without
having to write or import the whole job into the JCL. If you define a job by
definition, you provide a JCL definition to be submitted. This job type runs
only on Tivoli Workload Scheduler distributed - Agent for z/OS.

Web services jobs
Call a web service.

Database jobs
Perform queries, SQL statements, and jobs on a number of databases,
including custom databases. You can also create and run stored procedures
on DB2, Oracle, and MSSQL databases.

Executable jobs
Run a script or command with advanced options, such as redirecting
standard input and standard output to a file.

Java jobs
Run a Java class

MSSQL jobs
Run a Microsoft SQL job.

XA jobs
Extend job scheduling functions of Tivoli Workload Scheduler to other
systems and applications using access methods. The access methods
communicate with the external system to launch the job and return the
status of the job. The following access methods are available:
v Oracle E-Business Suite
v PeopleSoft
v SAP
v MVS
v Custom methods

J2EE jobs
Allow Java applications in the same network to send and receive messages
from and to a JMS destination.

IBM i jobs
Run a command on IBM i systems.

In addition to configuring job types with advanced options using the Dynamic
Workload Console or the composer command, you can use the related

Chapter 1. Understanding dynamic workload scheduling 9

|
|
|
|
|
|

|
|

|

|
|
|

||
|
|
|
|

|
|

|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|

|

|

|

|

|

|
|
|

|
|

|
|

configuration files. For more information, see the section about configuring to
schedule job types with advanced options in the Administration Guide, SC23-9113.

For more information about the procedure for defining job types with advanced
options, see the section about creating job types with advanced options in Tivoli
Dynamic Workload Console User's Guide. For more information about each job type,
see the Dynamic Workload Console online help. For information on how to create
jobs using the composer command, see the section about job definition in the
User's Guide and Reference, SC32-1274.

In addition, you can create custom plug-ins to implement your own job types with
advanced options for applications not supported by Tivoli Workload Scheduler. For
more information on how to create custom plug-ins, see Extending Tivoli Workload
Automation, SC14-7623.

You run the job types with advanced options, both those supplied with the
product and the additional types implemented through the custom plug-ins only
on dynamic agents, pools, and dynamic pools.

Creating job types with advanced options
This section explains how to create a specific job type using the job types with
advanced options provided with the Dynamic Workload Console.

You can easily define job types with advanced options, without having specific
skills on the applications where the job runs. You can then schedule these job types
only on dynamic agents, pools, and dynamic pools. The following procedure
describes how to create a file transfer job using the Dynamic Workload Console.
The procedure for creating the other job types is similar, but each job type contains
job-specific options. For more information about each job type, see the Dynamic
Workload Console online help.

To create a file transfer job using the Dynamic Workload Console, do the following:
1. Log on to the Dynamic Workload Console.
2. Expand Tivoli Workload Scheduler.
3. In the console navigation tree, expand Workload > Design and click Create

Workload Definitions.
4. Specify an engine name. The Workload Designer is displayed.
5. In the Working List panel, select New > Job Definition > FileTransfer. The

properties of the job are displayed in the right-hand panel for editing.
6. In the properties panel, specify the attributes for the job definition you are

creating.
7. Click Save to save the job definition in the database.

Return codes
The following is a list of the return codes for database jobs, Java jobs, web services
jobs and IBM i jobs.
Database Jobs:
RC = 0 -> Job completed successfully
RC = -1 -> SQL statement was run with an exit code different from 1
RC = -2 -> MSSQL Job error
RC = -3 -> SQL statement did not run because of an error in the statement

Java Jobs:
RC = 0 -> Job completed successfully
RC = -1 -> The Java application launched by the job failed due to an exception

10 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|

|
|

|
|
|
|
|
|
|

|

|

|

|
|

|

|
|

|
|

|

|

|
|

|
|
|
|
|

|
|
|

Web services Jobs:
RC = 0 -> Job completed successfully
RC = -1 -> The server hostname contained in the Web Service URL is unknown
RC = -2 -> Web Service invocation error

IBM i Jobs:
Return code = user return code when retrieved
Return code = 0 -> job completed successfully
Return code > 0 -> job completed unsuccessfully

When the user return code is retrieved, the IBM i Agent Monitor assigns a priority
to it.

Promoting jobs scheduled on dynamic pools
This section explains how to promote a critical job scheduled on a dynamic pool. A
promoted job can run on a larger number of dynamic agents in the dynamic pool
than a non-promoted job. This ensures that an important job runs before other jobs
that are less important.

To ensure that a critical job obtains the necessary resources and is processed in a
timely manner, you can promote it using promotion variables:

tws.job.promoted
This environment variable indicates if the job is promoted. Supported
values are YES and NO. The value of this variable applies to all jobs
submitted in the specified environment.

tws.job.resourcesForPromoted
This variable is defined in the dynamic pool definition and indicates the
quantity of the required logical resources assigned on a dynamic pool to a
promoted job. Values can be 1 if the job is promoted or 10 if the job is not
promoted. The quantity is indicated with this notation:
${tws.job.resourcesForPromoted}.

When a job is scheduled on the dynamic pool, the value of the tws.job.promoted
variable in the job determines the behavior of the dynamic pool:
v If the value of the tws.job.promoted variable is NO, the value of the

tws.job.resourcesForPromoted variable on the dynamic pool is 10, which means
that few resources match the requirement.

v If the value of the tws.job.promoted variable is YES, the value of the
tws.job.resourcesForPromoted variable on the dynamic pool is 1, which means
that more resources match the requirement because the dynamic pool includes
workstations with resource quantity equal to or greater than 1 and not only
workstations with value equal or greater than 10.

For example, you can write a script that checks the value assigned to the
tws.job.promoted variable in the job and performs different actions based on
whether or not the job is promoted.

Adding dynamic capabilities to existing Tivoli Workload
Scheduler jobs

This section explains how to modify an existing job to use the dynamic capabilities
provided with dynamic agents, pools, and dynamic pools.

You can modify your existing Tivoli Workload Scheduler jobs to use the dynamic
capabilities provided with dynamic agents, pools, and dynamic pools. To modify
an existing job, do the following:

Chapter 1. Understanding dynamic workload scheduling 11

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|

|

|

|
|

|
|
|

1. Install the required number of dynamic agents.
2. Optionally, assign the dynamic agents to pools or create dynamic pools based

on your requirements.
3. Analyze your existing Tivoli Workload Scheduler jobs and decide which ones

would obtain the best results when using the dynamic capability.
4. Log in to the Dynamic Workload Console.
5. Expand Tivoli Workload Scheduler.
6. In the console navigation tree, expand Workload > Design and click Create

Workload Definitions.
7. Specify an engine name. The Workload Designer is displayed.
8. In the Working List panel, select Search > Job Definition. The search panel is

displayed.
9. Enter your search criteria and click Search.

10. Select one or more jobs among the search results and click Edit. The selected
jobs are displayed in the right-hand panel for editing.

11. In the General tab, click on the browse button of the Workstation field. The
search panel is displayed.

12. Enter your search criteria and click Search.
13. Select the appropriate dynamic agent, pool, or dynamic pool and click OK.

The job is now assigned to the specified workstation and will run on it when
scheduled.

A business scenario on dynamic capability
This section demonstrates a sample business scenario which outlines the
advantages of job types with advanced options and dynamic capability.

An insurance company runs a number of jobs at night to save the data processed
during the day in the backup database. They also need to gather all data about the
transactions completed during the day from all the workstations in the company
branches. They use DB2 databases. Using the job types with advanced options
provided in the Workload Designer, they create a job to perform a DB backup and
another job to extract the data for the daily transactions. To perform these
operations, they use the new database job type with advanced options.

After gathering data from all the company workstations, they copy the resulting
data on a single workstation and process it to generate a report. They choose
dynamically the best available workstation by defining the requirements necessary
to run the job: a workstation with large disk space, powerful CPU and the
program required to generate the report.

If the administrator does not want to modify the job stream he used before Tivoli
Workload Scheduler. version 8.6 to run a Java job, for example, he can modify the
name of the workstation where he wants the job to run, inserting the name of a
pool or dynamic pool of dynamic agents where the Java executable is installed.
Tivoli Workload Scheduler translates the syntax of the job so that it can be run by
the Java program and assigns the job to the best available resource in the pool.

The report highlights how many new contracts were signed and how many
customers are late with their payments. A mail is sent to the chief accountant,
listing the number of new contracts and late customers.

The company can reach this objective by:

12 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

|

|
|

|
|

|

|

|
|

|

|
|

|

|
|

|
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

v Using the new workstations with dynamic capabilities to run the jobs the
administrator created for the existing Tivoli Workload Scheduler workstations.
To run these jobs on the new workstations, the administrator changes only the
workstation where he wants the job to run. The major advantage is that he can
use the workflows he previously created without additional effort.

v Defining several job types with advanced options without having specific skills
on the applications where the job runs.

These job types with advanced options run on the following workstations:

dynamic agents
Workstations capable of running both existing jobs and job types with
advanced options.

Pools Groups to which you can add dynamic agents depending on your needs.
Jobs are assigned dynamically to the best available agent.

Dynamic pools
Groups of dynamic agents for which you specify your requirements and let
Tivoli Workload Scheduler select the dynamic agents which meet your
needs. Jobs are assigned dynamically to the best available dynamic agent.

A business scenario
The purpose of the following scenario is to show how a system of dynamic
allocation of workload to computer resources can make an important contribution
to the smooth and profitable running of a business by optimizing use of available
resources.

The business
Fine Cola is a medium-sized enterprise that produces and distributes soft drinks to
retailers across the country. It owns a production plant and several strategically
located distribution centers. Fine Cola has a range of customer types from
nationwide foodstore chains to small local outlets. The foodstore chains normally
maintain fixed orders though changes can be made at delivery time. Small local
outlets often restock directly from the delivery truck with no previous order made.
Order quantities can vary, peaking in the warmer season and during holidays.

The process from ordering of the raw materials to the delivery of the finished
product and the return of empties consists of a number of subprocesses: inventory,
purchase ordering or raw materials, production, supply to distribution centers, and
delivery. All of these subprocesses are interdependent and activities in one
subprocess are often triggered by an event in another. For example, ordering of a
raw material is automatically triggered when inventory discovers that the amount
of the raw material currently held in the warehouse has hit the reorder level.

The challenge
Fine Cola uses Tivoli Workload Scheduler to manage the timing and
interdependencies of its production and supply process. However, in some areas
problems are occurring with computer resource allocation:
v Some scheduled jobs are experiencing long wait times before resources become

available.
v Performance problems are occurring as some resources become overloaded.
v When a resource that normally runs workload is removed temporarily or

permanently, the job definitions must be manually changed to target a new
resource.

Chapter 1. Understanding dynamic workload scheduling 13

|
|
|
|
|

|
|

|

|
|
|

||
|

|
|
|
|

|

Tivoli Workload Scheduler uses fixed resource allocation and this is presenting
Fine Cola with the choice of either acquiring more resources or constantly running
the risk that jobs will not be completed in a timely manner.

The problems are particularly evident during the end-of-day reconciliation process.
This process starts when the last delivery truck returns and must be completed
before the next day's delivery route planning can be started. The main focus of the
end of day processing is the daily transaction database. This database includes a
wide variety of transactions including consignment transactions for each item in a
customer order, consignment transactions for each delivery load, receipt
transactions for returned items, receipt transactions for empties, adjustments
transactions to customer billing when the order amount has been changed on
delivery. These transactions are used to update the following databases: customer
orders and billing, inventory, and general ledger.

Within a small time window, the following tasks must be completed:
v Update the inventory database with returned items.
v Update the inventory database with returned empties.
v Update customer orders and billing database to take account of changes to

orders and to create orders and billing for customers who have restocked from
the truck.

v Update the general ledger database.
v Conduct data-mining extractions on the transaction database and save the

extracted information in the management reports database for later analysis of
buying trends to be used in future promotion campaigns.

v Produce several reports of varying levels of detail of transactions by item, by
customer, and by delivery route to enable analysis of the profitability of product
lines and routes. Save these reports in the management reports database.

The solution
Fine Cola decides that an important element is missing from their IT solution: the
ability to maintain a pool of computer resources, to identify those that match the
requirements of a job, and to dynamically assign the job to a matching resource
that is available at submission time.

A decision is made to take advantage of the dynamic workload broker feature of
Tivoli Workload Scheduler, since this seems to cover their requirements for job
scheduling, dependency resolution, and efficient allocation of resources. The IT
infrastructure administrator starts by migrating to this version of Tivoli Workload
Scheduler and by deploying Tivoli Workload Scheduler agents on the computers
normally used to perform the tasks associated with the transaction database in the
end-of-day reconciliation process. In this way, it will be possible to see whether
dynamic allocation results in a more efficient use of resources.

The hardware scan performed by the agent provides a pool of detailed information
about the computer systems, their operating systems, file systems, and network
connections. To complete the picture of available resources and make it possible to
accurately match resources to job requirements, the administrator must now
identify the computer systems that have access to the different databases. She does
this by using the Dynamic Workload Console to create a logical resource for each
database and linking it to the computer systems from which the database can be
accessed.

14 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Now that all the pieces are in place, the administrator can create the job
definitions, providing an accurate picture of the physical and logical resources
required for the job. She installs the Job Brokering Definition Console on her local
workstation. This tool provides an easy-to-use graphical interface for creating JSDL
job definitions.

She identifies the jobs and job requirements listed in Table 4.

Table 4. Day-end jobs and requirements

Job
Access to shared
remote drives Operating system Database access

Inventory item
update

None Linux Inventory,
Transaction

Inventory empties
update

None Linux Inventory,
Transaction

Customer orders
create/ update

None AIX® with at least
1024 MB of free
physical memory

Customer,
Transaction

Customer orders
billing

None AIX Customer,
Transaction

Transaction
consolidation and
General ledger
update

None AIX General ledger,
Transaction

Item information
data mining

None Linux, AIX, or
HP-UX

Transaction,
Management reports

route information
data mining

None Linux, AIX, or
HP-UX

Transaction,
Management reports

Sales summary by
item

//shared/reports/
sales

Linux, AIX, or
HP-UX

Transaction,
Management reports

Sales summary by
route

//shared/reports/
sales

Linux, AIX, or
HP-UX

Transaction,
Management reports

Sales summary by
customer

//shared/reports/
sales

Linux, AIX, or
HP-UX

Transaction,
Management reports

These jobs already exist in Tivoli Workload Scheduler but they use static allocation
of resources. She uses the Job Brokering Definition Console to import these jobs
and to create a JSDL job definition for each job, including the requirements
identified for each job:
v Add the candidate operating systems identified for each job.
v Add a file system requirement for remote access to the directory

//shared/reports/sales for the reporting jobs.
v Add the appropriate logical resources for the required database access.

.

Chapter 1. Understanding dynamic workload scheduling 15

When all the jobs have been created, she checks the matching resources that are
found for the jobs she has defined. She finds that eight systems match the job
requirements for the reporting and data-mining jobs, which require access to the
transaction and management reports databases. The other jobs that require access
to the inventory, customer, and general ledger databases respectively, each have
two matching systems. However, all these systems are also included in the eight
systems found for the reporting and data-mining tasks.

Figure 1. Resource requirements for the Inventory item update job

16 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

She wonders whether there will be problems of load balancing between the eight
systems and decides to include some optimization instructions in all of the job
definitions.

Figure 2. Matching resources for the day-end jobs

Chapter 1. Understanding dynamic workload scheduling 17

The objective she decides on is to distribute jobs between available resources with
the aim of keeping CPU usage to a minimum. She thinks that this will provide a
more efficient distribution of resources than simply aiming for an equal number of
jobs on each available computer system.

She also considers that the update jobs are targeting a subset of the computers
available to the data-mining and reporting jobs and decides that the update jobs
should be assigned a higher priority, so that their resources are assigned before the
jobs that have wider range of options. She goes back to the job definitions of the
update jobs, and sets the scheduling priority to 100 (the highest possible).

The job definitions are now complete, and she uploads them to the Job Repository
in the Tivoli Workload Scheduler database. She is confident that she will see an
improvement in the performance during end-of-day processing, since all jobs have
more than one possible target and since she has tailored her definitions to promote
a balanced use of available resources.

Using Tivoli Workload Scheduler, she creates a job stream for the day-end jobs and
schedules it to be submitted on each business day. Most of the jobs do not have
dependencies and can run at the same time. However, the route information data
mining job requires data produced by the item information data mining job as
input. It must wait until the item information data mining job has successfully
completed and then it must run on the same computer system.

Figure 3. Optimization instructions for a job

18 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

To achieve this objective without losing the benefits of dynamic allocation of
resources, she decides to define an affinity relationship between the two jobs.
Using Tivoli Workload Scheduler, she adds information to the route information
data mining job to identify its relationship to the item information data mining
task. When the job is submitted in the integrated environment, dynamic workload
broker recognizes the relationship and allocates the job to the resource where the
item information data mining task previously ran.

When the jobs in the job stream are submitted and dynamically allocated to
resources, she is able to track their progress and view job output from Tivoli
Workload Scheduler.

Chapter 1. Understanding dynamic workload scheduling 19

20 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 2. Using Tivoli Workload Scheduler variables in
dynamic workload broker jobs

This section explains how to add Tivoli Workload Scheduler variables to jobs you
plan to run with dynamic workload broker.

When importing jobs from Tivoli Workload Scheduler, you can add Tivoli
Workload Scheduler variables to obtain higher flexibility for your job.

The variables are assigned a value when you submit the job in Tivoli Workload
Scheduler. The supported Tivoli Workload Scheduler variables are as follows:

Table 5. Supported Tivoli Workload Scheduler variables in JSDL definitions.

Variables that can be inserted in the
dynamic workload broker job definition

Description

tws.host.workstation Name of the host workstation

tws.job.date Date of the submitted job.

tws.job.fqname Fully qualified name of the job
(UNISON_JOB)

tws.job.ia Input arrival time of the job

tws.job.interactive Job is interactive. Values can be true or
false. Applies only to backward-compatible
jobs.

tws.job.logon Credentials of the user who runs the job
(LOGIN). Applies only to
backward-compatible jobs.

tws.job.name Name of the submitted job

tws.job.num UNISON_JOBNUM

tws.job.priority Priority of the submitted job

tws.job.promoted Job is promoted. Values can be YES or No.
For more information about promotion for
dynamic jobs, see the section about
promoting jobs scheduled on dynamic pools
in Tivoli Workload Scheduler: Scheduling
Workload Dynamically.

tws.job.recnum Record number of the job.

tws.job.resourcesForPromoted Quantity of the required logical resources
assigned on a dynamic pool to a promoted
job. Values can be 1 if the job is promoted or
10 if the job is not promoted. For more
information about promotion for dynamic
jobs, see the section about promoting jobs
scheduled on dynamic pools in Tivoli
Workload Scheduler: Scheduling Workload
Dynamically.

tws.job.taskstring Task string of the submitted job. Applies
only to backward-compatible jobs.

tws.job.workstation Name of the workstation on which the job is
defined

© Copyright IBM Corp. 2009, 2011 21

||

||

||

||
|
|

||
|
|

||

||
|
|
|
|
|

||

||
|
|
|
|
|
|
|
|

||
|

Table 5. Supported Tivoli Workload Scheduler variables in JSDL definitions. (continued)

Variables that can be inserted in the
dynamic workload broker job definition

Description

tws.jobstream.id ID of the job stream that includes the job
(UNISON_SCHED_ID)

tws.jobstream.name Name of the job stream that includes the job
(UNISON_SCHED)

tws.jobstream.workstation Name of the workstation on which the job
stream that includes the job is defined

tws.master.workstation Name of the master domain manager
(UNISON_MASTER)

tws.plan.date Start date of the production plan
(UNISON_SCHED_DATE)

tws.plan.date.epoch Start date of the production plan, in epoch
format (UNISON_SCHED_EPOCH)

tws.plan.runnumber Run number of the production plan
(UNISON_RUN)

If you want to create a dynamic workload broker job to be submitted from Tivoli
Workload Scheduler, you can add one or more of the variables listed in Table 5 on
page 21 in the Variables field of the Overview pane as well as in the Script field
of the Application pane in the Job Brokering Definition Console.

If you plan to use the variables in a script, you also define the variables as
environment variables in the Environment Variables field in the Application pane.
Specify the Tivoli Workload Scheduler name of the variable as the variable value.
You can find the Tivoli Workload Scheduler name of the variable in the Variables
inserted in the dynamic workload broker job definition column.

You then create a Tivoli Workload Scheduler job which contains the name of the
job definition, as explained in Chapter 5, “Creating Tivoli Workload Scheduler jobs
managed by dynamic workload broker,” on page 29.

The following example illustrates a JSDL file with several of the supported Tivoli
Workload Scheduler variables defined:
...<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod
/scheduling/1.0/jsdl" xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/
jsdle"
description="This jobs prints UNISON Variables received
from TWS in standard OutPut "
name="sampleUNISON_Variables">

<jsdl:annotation>This jobs prints UNISON Variables
received from TWS in
standard OutPut </jsdl:annotation>

<jsdl:variables>
<jsdl:stringVariable name="tws.jobstream.name">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.fqname">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.master.workstation">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.plan.runnumber">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.plan.date">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.plan.date.epoch">none</jsdl:stringVariable>
<jsdl:stringVariable name="tws.job.logon">none</jsdl:stringVariable>

</jsdl:variables>
<jsdl:application name="executable">

<jsdle:executable output="${tws.plan.runnumber}">
<jsdle:environment>

22 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

||
|

<jsdle:variable name="UNISON_SCHED">${tws.jobstream.name}
</jsdle:variable>

<jsdle:variable name="UNISON_JOB">${tws.job.fqname}
</jsdle:variable>

<jsdle:variable name="UNISON_MASTER">${tws.master.workstation}
</jsdle:variable>

<jsdle:variable name="UNISON_RUN">${tws.plan.runnumber}
</jsdle:variable>

<jsdle:variable name="UNISON_SCHED_DATE">${tws.plan.date}
</jsdle:variable>

<jsdle:variable name="UNISON_SCHED_EPOCH">${tws.plan.date.epoch}
</jsdle:variable>

<jsdle:variable name="LOGIN">${tws.job.logon}
</jsdle:variable>

</jsdle:environment>
...

Chapter 2. Using Tivoli Workload Scheduler variables in dynamic workload broker jobs 23

24 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 3. Using variables in jobs

This section explains how to define and use variables in jobs for additional
flexibility.

Dynamic workload broker supports the use of variables in jobs for additional
flexibility. You can assign values to the variables or leave them blank, so that you
can define the value when the job is submitted.

When you define jobs that will be processed through dynamic scheduling, you can
include variables that can be used at run time to valorize or override the variables
defined in the JSDL job definition.

You define the variables in the Task String section of the Tivoli Workload
Scheduler job, as described in the following example:
jobName -var var1Name=var1Value,...,varNName=varNValue

To define variables in the Tivoli Workload Scheduler job, perform the following
steps:
1. Create a JSDL job definition using the Job Brokering Definition Console.
2. Define the variables for the job. For example, you can define the memory

variable to specify the amount of memory required for the job to run.
3. Move to the Resources tab, Hardware Requirements section and type the

name of the variable in the Exact value field in the Physical Memory section.
When the job is submitted, the value assigned to the memory variable defines
the amount of physical memory.

4. Save the job definition in the Job Repository database.
5. Define a job in Tivoli Workload Scheduler. This job contains the standard

Tivoli Workload Scheduler syntax and instructions; in the Task String section
of the job, specify the name of the JSDL job definition. The name of the job
definition is specified in the jobDefinition element in the JSDL file.
In the Task String section of the job, you can also specify the parameters you
want to provide to the job while it runs using static text or variables. For
example, you can use the memory variable you previously defined.

Note: If you are using variables that you have not previously defined, you
must provide them with a value now.

6. Add the job to a job stream.
7. Submit or schedule the job using either the Dynamic Workload Console or

conman.
8. After any existing dependencies are resolved, the master domain manager

submits the job to dynamic workload broker via the dynamic workload broker
workstation.

9. The dynamic workload broker workstation identifies the job definition to be
submitted based on the information on the Task String section of the job. It
also creates an alias which contains the association with the job.

10. The job definition is submitted to dynamic workload broker with the value
specified for the memory variable.

11. Dynamic workload broker manages and monitors the whole job lifecycle.

© Copyright IBM Corp. 2009, 2011 25

12. Dynamic workload broker returns status information on the job to the
dynamic workload broker workstation, which communicates it to the Master
Domain Manager. The job status is mapped to the Tivoli Workload Scheduler
status as described in Table 6 on page 31.

26 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 4. Defining affinity relationships

Affinity relationships cause jobs to run on the same resource. The resource on
which the first job runs is chosen dynamically by dynamic workload broker, and
the affine job or jobs run on the same resource.

In dynamic workload broker, you can define affinity relationships between two or
more jobs when you want them to run on the same resource. When submitting the
job from the Tivoli Workload Scheduler environment, you can define affinity that
will be resolved by dynamic workload broker by adding an affinity definition to
the Task String section of the Tivoli Workload Scheduler job in one of the
following ways:
v Identifying affine job with the dynamic workload broker job ID
v Identifying affine job with the dynamic workload broker job alias
v Identifying affine job with the Tivoli Workload Scheduler job name

Identifying affine job with the dynamic workload broker job ID
jobName [-var varName=varValue,...,]-affinity jobid=jobid

Identifying affine job with the dynamic workload broker job alias
jobName [-var varName=varValue,...,]-affinity alias=alias

where

jobid Is the ID dynamic workload broker assigns when the job is submitted.

alias Is one of the following:
v The alias defined by the user at submission time for dynamic workload

broker jobs.
v The alias automatically generated by the dynamic workload broker

workstation when the job is submitted from Tivoli Workload Scheduler.

Identifying affine job with the Tivoli Workload Scheduler job name
The jobs must belong to the same job stream
jobName [-var varName=varValue,...,]-twsaffinity jobname=twsJobName

where

twsJobName
Is the name of the instance of the Tivoli Workload Scheduler job
with which you want to establish an affinity relationship.

© Copyright IBM Corp. 2009, 2011 27

28 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 5. Creating Tivoli Workload Scheduler jobs managed
by dynamic workload broker

This section explains how to create Tivoli Workload Scheduler jobs to be managed
by dynamic workload broker.

To create a Tivoli Workload Scheduler job and have resources allocated
dynamically, perform the following steps:
1. Create a JSDL job definition in dynamic workload broker using the Job

Brokering Definition Console.
2. Create a job to be submitted in Tivoli Workload Scheduler. Define the job using

the standard Tivoli Workload Scheduler syntax and instructions, with the
following imperatives:
a. Define as target CPU the workstation where the dynamic workload broker

workstation is installed.
b. In the Task String section of the job, specify the name of the JSDL job

definition you created in the dynamic workload broker environment.
c. Set the task type as BROKER.

3. The Tivoli Workload Scheduler job can now be scheduled and when it is
submitted to the dynamic workload broker workstation, the dynamic workload
broker job is automatically launched and the resources are dynamically
allocated.

© Copyright IBM Corp. 2009, 2011 29

30 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 6. Monitoring and canceling jobs

This section explains how you can monitor and cancel jobs using the Dynamic
Workload Console or the conman command.

You can use the Dynamic Workload Console or the conman command line to
monitor the status of submitted jobs, retrieve the job output, and cancel jobs if
necessary, as you normally do in Tivoli Workload Scheduler. You can also use the
Dynamic Workload Console to view their status since it provides more detail on
jobs processed through dynamic workload broker.

Job statuses in dynamic workload broker correspond to the following statuses in
Tivoli Workload Scheduler:

Table 6. Status mapping between dynamic workload broker and Tivoli Workload Scheduler

Dynamic workload broker job status Tivoli Workload Scheduler job status

1. Run failed

2. Unable to start

3. Resource allocation failed

4. Unknown

1. ABEND

2. FAILED

3. FAILED

4. ABEND

1. Submitted

2. Submitted to Agent

3. Resource Allocation Received

4. Waiting for Reallocation

5. Waiting for Resources

1. INTRO

2. WAIT

3. WAIT

4. WAIT

5. WAIT

1. Running 1. EXEC

1. Completed Successfully 1. SUCC

1. Canceled

2. Cancel Pending

3. Cancel Allocation

1. ABEND

2. The status is updated when the job reaches the
Canceled state in dynamic workload broker

3. The status is updated when the job reaches the
Canceled state in dynamic workload broker

Note: The + flag written beside the INTRO and EXEC statuses means that the job
is managed by the local batchman process.

You can view the job output by using both the Dynamic Workload Console or the
conman command-line.

The following example displays the output of the TWS_COLLECT_DATA job,
submitted from Tivoli Workload Scheduler to the dynamic workload broker
workstation.
%sj ITDWB_SA#JOBS.TWS_COLLECT_DATA;stdlist

==
= JOB : lab134114#TWS_COLLECT_DATA
= USER : mdm_821
= JCLFILE : COLLECT_DATA -var data_collect_interval=12

-twsaffinity jobname=branch_collect

© Copyright IBM Corp. 2009, 2011 31

= Job Number: 226589429
= Wed Oct 25 00:31:03 GMT+08:00 2006
==
THIS IS THE OUTPUT OF THE JOB
==
= Exit Status : 0
= System Time (Seconds) : 30 Elapsed Time (Minutes) : 0
= User Time (Seconds) : 30
= Wed Oct 25 00:31:33 GMT+08:00 2006
==

The keywords in the file output are as follows:

JOB Is the host name of the Tivoli Workload Scheduler agent to which the job
has been submitted and the job name.

USER Is the Tivoli Workload Scheduler user who submitted the job to the
dynamic workload broker workstation. When a scheduled job is submitted,
the user name is retrieved from the STREAMLOGON keyword specified
in the job definition. When an ad-hoc job is submitted from conman and
the logon is not specified, the user name corresponds to the user who
submitted the job.

JCLFILE
Is the job name.

Job Number
Is the job number.

Exit Status
Is the status of the job when completed.

System Time
Is the time the kernel system spent for the job.

User Time
Is the time the system user spent for the job.

You can also kill the job after submitting it. Killing a job in Tivoli Workload
Scheduler performs the same operations as issuing the cancel command in
dynamic workload broker.

32 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 7. Identifying the resources for jobs

To schedule jobs, dynamic workload broker first scans the computers in the
environment to retrieve hardware and operating system information from the
agent computers. You can also optionally create logical resources that represent
characteristics of the computers that are not gathered by the scan, such as software
licenses or installed applications, to further identify resources available in the
environment.

After the Tivoli Workload Scheduler agent is installed, an automatic scan is
performed on the discovered computers where the agent is installed. The scan
returns hardware and operating system information which is stored in the
Resource Repository.

The hardware and operating system information returned by the scan is considered
a physical resource. Physical resources collected from the agent computers include
the following:

Types of physical resources Examples

Computer system Computer system name, model, number of
processors, CPU speed

Operating system Operating system type and version, virtual
memory, physical memory, swap space

Network system IP address, network card, host name

File system File system storage capacity

The automatic discovery process of gathering physical resource information is
capable of identifying available computers with the resources required for jobs to
run on. The scan is scheduled and configurable. You can configure the scan from
the ResourceAdvisorAgentConfig.properties file on the master domain manager
and from the JobManager.ini file on the agents. Ensure the scan runs at regular
times to update any changes to resources. Refer to the Tivoli Workload Scheduler:
Administration Guide, SC23-9113 for more information about this configuration file.

When the physical resources gathered by the scan do not supply enough
information to accurately address specific job requirements, you can define logical
resources or resource groups using the Dynamic Workload Console. The Dynamic
Workload Console gives you the capability to set up additional logical resources
and link them to computers where the resources are available. Logical resources
help identify resources required by jobs to make allocation more accurate. Logical
resources can also be used when expressing a consumable quantity of a resource.
For example, you might use a logical resource to identify specific applications, and
you might also use them to define a limited number of software licenses available.
When a job is submitted, the job definition includes the physical and logical
resource requirements, and with this information dynamic workload broker finds
the most suitable computer.

You can also use the Dynamic Workload Console to define a resource group. A
resource group is a combination of physical and logical resources defined to
accurately match and allocate resources to job requirements when the job is
submitted. After creating logical resources and resource groups, you can

© Copyright IBM Corp. 2009, 2011 33

subsequently edit them using the Dynamic Workload Console. If a computer,
logical resource, or resource group becomes unavailable or you need to make it
unavailable to perform maintenance tasks, for example, you can set the status to
offline. You can subsequently set the status online using the Dynamic Workload
Console.

The following are tasks for configuring resources:
v “Creating logical resources” on page 36
v “Creating resource groups” on page 38

Checking physical resources on computers
You can browse and display the physical resources discovered by the agent scan
on the computers in your environment.

The automatically scheduled scan that runs on computers when the Tivoli
Workload Scheduler agent is installed returns hardware and operating system
information from the agent computers to the Resource Repository. You can use the
Dynamic Workload Console to view the information collected by the agent, in
addition to the other information about the computers. The following information
can be accessed:
v Operating system information
v Computer availability
v Processor information
v Machine information
v Free memory, free virtual memory, and free swap space
v System resources allocated to jobs
v A history of job instances that ran on the computers and are currently running

To view information about the physical resources available on the computers in
your environment, do the following:
1. In the Tivoli Dynamic Workload Broker navigation tree, expand Configuration

and click Server Connections

2. Define viable connections, test, and save them .
3. Expand Tracking and click Computers.
4. Specify the search criteria for the computers you want to find.
5. Click Search. The computers that meet the search criteria are displayed in the

Computer Search Results page.
6. To view the physical resources for a computer, select the display name link for

the computer. The Computer details page displays the physical resources on
the computer.

Figure 4 on page 36 shows the Computer Search Results page. From this view you
can perform the following tasks:
v Set computers offline so that they cannot be allocated to run jobs.
v Set offline computers back online so that they can be allocated to run jobs.
v Delete computers so that they are no longer visible when you search for

computers. When you delete a computer, it is temporarily removed from the
database for a period of time defined in the
ResourceAdvisorAgentConfig.properties file. After the deletion, the Tivoli
Workload Scheduler agent remains installed and running. Any jobs currently

34 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

allocated and running on the computer complete. To permanently delete a
computer, you must uninstall the Tivoli Workload Scheduler agent.

v Refresh the view of the computer search results to see updated information
about computers.

v View the number of jobs currently allocated on a given computer in the Active
Jobs column. For each computer this column shows the number of jobs that
have selected the computer as a target system, as well as the number of jobs that
are currently allocating the computer as a related resource. In the specific case
you defined a computer system as a type for a related resource required to run a
job (in the JSDL definition of the job), when the job is allocated it is displayed
twice in Active Jobs as follows:
– If the same computer is selected both as a target system and as a related

resource, the column shows 2 jobs for that computer, even though there is
only one job running.

– If different computers are selected for the target system and the related
resource, the column shows the same job twice (once for each computer).

v View additional information about a computer.

To perform these tasks, do the following:
1. Select a computer in the Computer Search Results table.
2. Select one of the following operations from the Actions menu:

v Set as online

v Set as offline

v Delete

v Refresh

3. Click Go to perform the operation.

You can display details on computers by clicking the computer name link in the
Computer Search Results table.

Chapter 7. Identifying the resources for jobs 35

In general, you can click links for job names, job instance names, and computers
from the Dynamic Workload Console to display more details about them.

Creating logical resources
Using the Dynamic Workload Console, you can define logical resources and
resource groups for workstations with properties that are not discovered with a
system scan. You create a logical resource specifying the characteristics of the
resource that are required to run jobs.

To create a logical resource, perform the following steps:
1. In the Tivoli Dynamic Workload Broker navigation tree, expand Scheduling

Environment and click Define a New Logical Resource. The Define a New
Logical Resource wizard starts. The wizard helps you create a new resource
and add it to computers in your environment.

2. In the General Properties page, define the general properties for the logical
resource:
a. In the Name field, type the name to be assigned to the logical resource. This

field is required. The name must start with an alphabetical character, and
can contain underscore symbols (_), minus symbols (-), and periods (.).
Spaces, special characters, accented characters are not supported.

b. In the Type field, type a meaningful name for the logical resource type. For
example, if the logical resource describes DB2® applications, you might call
the resource DB2. The name must start with an alphabetical character, and
can contain underscore symbols (_), minus symbols (-), and periods (.).
Spaces, special characters, accented characters are not supported.

Figure 4. Computer Search Results page

36 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

c. In the Quantity field, specify a value that represents the availability of the
logical resource. For example, if the resource consists in a license server, you
can specify the number of licenses available on the server for a product.
This field is optional.

d. Select the Set as Offline check box to mark the resource as not available.
You can subsequently change the resource status by expanding Scheduling
Environment in the left pane and selecting Logical Resources. You can then
search for a resource and modify the status.

e. Click the Next button to proceed.
3. In the Computer Search Criteria page, specify the criteria for searching the

computers to be added to the logical resource. In this page, you can either
perform a search on all computers available in the dynamic workload broker
environment or you can search for specific computers. To search on all
available computers, leave all fields blank. As an alternative, you can specify
one or more of the search criteria listed below. The search criteria are
cumulative; each additional information you specify further refines the search:
v In the Host Name field, specify the host name of a computer. Wildcards are

supported. The search is performed on computers with the specified host
name or section of the host name. For example, if you enter test* in the Host
name field, the test1 and testing host names are returned.

v In the Logical resources already on the computer area, specify the name and
type of logical resources already present on the computer, if any. In the
Name field, specify the logical resource name and in the Type field specify
the logical resource type. Wildcards are supported.

v In the Availability area, specify whether the computer is:

Available
The computer is available and can be assigned jobs.

Unavailable
The computer is not available. The network might be down or the
computer might be switched off.

v In the Status area, define the status of the specified computer.

Online
The computer is online.

Offline
The computer is offline. The administrator might have set the
computer offline for maintenance purposes.

v In the Hardware Characteristics area, specify the number of processors
available on the computer:

Single processor
The computer contains one processor.

Double processor
The computer contains two processors.

Multi processor
The computer contains three or more processors.

v In the Operating System area, specify the operating system installed on the
computers for which you want to search. The search is performed only for
computers with the selected operating systems. Available operating systems
are:
– Windows

– Linux

Chapter 7. Identifying the resources for jobs 37

– AIX

– Oracle Solaris

– HP-UX

The results of the search are displayed in the Computer Search Results pages.
4. In the Computer Search Results page, you specify to which computers you

want to add the logical resource you are creating. Your selections are displayed
in the Summary page.

5. In the Summary page, you can optionally remove the selected computer from
the logical resource you are defining. Click Finish to save the logical resource.

The logical resource has been created and can be accessed using the Scheduling
Environment > Logical Resources task. You can perform the following operations
using this task:
v Set the online or offline status of the logical resource.
v Delete the logical resource.
v Edit the logical resource specifications, including the computers where the

logical resource is located, the online or offline status of the computers, and the
logical resource name, unless the logical resource was imported from the
Configuration Management Database. A Configuration Management Database
logical resource can be identified in the table of logical resources by the value
CCMDB in the Owner column.

Creating resource groups
Using the Dynamic Workload Console, you can create resource groups to group
computers, logical resources, or both. A resource group represents a logical
association between computers, logical resources, or both with similar hardware or
software characteristics. It is a combination of physical and logical resources to
accurately match and allocate resources to job requirements when the job is
submitted.

To create a resource group, perform the following steps:
1. In the console navigation tree, expand Scheduling Environment and click

Define New Resource Group. The Resource Group wizard starts. The wizard
helps you create a new resource group.

2. In the Group Type Selection page, specify a name, the status, and a type for
the resource group:
a. In the Name field, type the name to be assigned to the resource group. The

name must start with an alphabetical character, and can contain underscore
symbols (_), minus symbols (-), and periods (.). Spaces, special characters,
and accented characters are not supported. This field is required.

b. Select the Set as Offline check box to mark the resource group as not
available. You can subsequently change the resource group status by
expanding Scheduling Environment in the left pane and selecting Resource
Groups. You can then search for a resource group and modify the status.

c. In the Select items to be grouped area, select the elements the group
consists of. Supported values are computers, logical resources or both. This
field is required.

d. Click the Next button to proceed.
3. In the Computer Search Criteria page, specify the criteria for searching

available computers to be added to the resource group. In this page, you can
either perform a search on all computers available in the dynamic workload

38 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

broker environment or you can search for specific computers. To search on all
available computers, leave all fields blank. As an alternative, you can specify
one or more of the search criteria listed below. The search criteria are
cumulative; each additional information you specify further refines the search:
v In the Host Name field, specify the host name of a computer. Wildcards are

supported. The search is performed on computers with the specified host
name or section of the host name. For example, if you enter test* in the Host
name field, the test1 and testing host names are returned.

v In the Logical resources already on the computer area, specify the name and
type of logical resources already present on the computer, if any. In the
Name field, specify the logical resource name and in the Type field specify
the logical resource type. The name and type must start with an alphabetical
character, and can contain underscore symbols (_), minus symbols (-), or
periods (.). Spaces, special characters, and accented characters are not
supported.

v In the Availability area, specify whether the computer is:

Available
The computer is available to be allocated.

Unavailable
The computer is not available. The network might be down or the
computer might be switched off.

v In the Status area, define the status of the specified computer.

Online
The computer is online.

Offline
The computer is offline. The administrator might have set the
computer offline for maintenance purposes.

v In the Hardware Characteristics area, specify the number of processors
available on the computer:

Single processor
The computer contains one processor.

Double processor
The computer contains two processors.

Multi processor
The computer contains three or more processors.

v In the Operating System area, specify the operating system installed on the
computers for which you want to search. The search is performed only for
computers with the selected operating systems. Available operating systems
are:
– Windows

– Linux

– AIX

– Oracle Solaris

– HP-UX

Click Next to perform the search based on the criteria specified. The results of
the search are displayed in the Computer Search Result page.

4. In the Computer Search Result page, you specify to which computers you
want to add the group you are creating. Click Next.

Chapter 7. Identifying the resources for jobs 39

5. If the resource group you are defining includes a logical resource, then the
Logical Resource Search Criteria page prompts you to specify the following
search criteria:
a. The name of the logical resource.
b. The type of logical resource.

Click Next to display the Logical Resources Search Results page.
6. Select the logical resource to add to the resource group you are defining and

click Next to display the Summary page.
7. In the Summary page, you can optionally remove any computer or logical

resource that you included in the resource group. Click Finish to save the
resource group.

The resource group has been created and can be accessed using the Scheduling
Environment > Resource Groups task. You can perform the following operations
using this task:
v Set the online or offline status of the resource group.
v Delete the resource group.
v Edit the resource group specifications, including adding and removing

computers and logical resources from the group, changing their online or offline
status, and changing the resource group name.

40 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 8. Writing JSDL definitions with the Job Brokering
Definition Console

The Job Brokering Definition Console provides an easy-to-use graphical interface
that helps you create and edit JSDL job definitions for use with dynamic workload
broker.

The Job Brokering Definition Console graphical interface helps you create and edit
job definitions based on the Job Submission Definition Language (JSDL) schema.
Each text field in the Job Brokering Definition Console corresponds to an element
or attribute in the JSDL file and vice versa. You can use the Job Brokering
Definition Console to create existing job types. If you need to create job types with
advanced options, use the Dynamic Workload Console or composer command.

The Job Brokering Definition Console simplifies the task of creating a JSDL file by
hiding the complexity of the file itself and validating the file structure against the
JSDL schema. Information defined in the Job Brokering Definition Console is
automatically converted to the corresponding element or attribute in the JSDL file.

You can save a JSDL file locally or upload it as a job definition in the Job
Repository where it becomes available for submission. When you save the file in
the Job Brokering Definition Console, the JSDL file is checked against an .xsd file
provided with the product installation which contains the syntax rules. A message
is displayed if a syntax error is encountered in the JSDL file, allowing you to
correct the error.

The Job Submission Description Language (JSDL) is an XML-based language used
for specifying the characteristics and requirements of a job, as well as instructions
on how to manage and run it. These include the following:
v Job identification information
v Program running information
v Resource requirements
v Scheduling and running requirements
v Resource quantity to be allocated or required
v Logical allocation of the resource quantity

Selecting target types

When creating a JSDL file, you can choose between the following resource types as
targets for your job:

Resources
A resource is a computer system. You can use this resource type to define a
basic requirement for your job.

Related resources
A related resource is a set of resource types. You can use this resource type
to define a basic requirement for your job. A related resource includes the
following resource types:
v A set of hardware and software properties of a computer such as

operating system, file system and network system.

© Copyright IBM Corp. 2009, 2011 41

|
|
|
|
|
|

v Logical resources and logical entities that can be associated to one or
more computers to represent applications, groups, licenses, servers and
so on.

Related resources have two main functions:
v You can specify related resources as an additional requirement adding to

the resource requirement. In this case, you must create a relationship
between the resource and the related resource.

v You can use the related resource to indicate that the presence of a certain
resource in your environment is a co-requisite for running the job. In
this case, you must not create a relationship between the resource and
the related resource. A related resource having no relation to a resource
is a global resource. For example, if you want to move a file from
resource A to resource B, resource B is a co-requisite for running the job
which moves the file. Computers can only be defined as global
resources.

Selecting resource types

Dynamic workload broker manages the resource types listed in Table 7. For each
resource type, you can specify requirements on the properties listed in the
Available properties column. Table 7 also lists consumable properties and
properties that can be optimized. Consumable properties can be allocated
exclusively to the job while it runs using the allocation mechanism. Properties that
can be optimized can be used to provide a more effective load balancing on the
resource property.

Table 7. Resource types and properties

Resource Type Available properties Is consumable Can be optimized Supports wildcards

ComputerSystem CPUUtilization No Yes No

HostName No No Yes

Manufacturer No No Yes

Model No No Yes

NumOfProcessors Yes Yes No

ProcessingSpeed No Yes No

ProcessorType No No No

LogicalResource DisplayName No No Yes

SubType No No Yes

Quantity Yes Yes No

OperatingSystem DisplayName No No Yes

FreePhysicalMemory No Yes No

FreeSwapSpace No Yes No

FreeVirtualMemory No Yes No

OperatingSystemType No No No

OperatingSystem
Version

No No No

TotalPhysicalMemory Yes Yes No

TotalSwapSpace Yes Yes No

TotalVirtualMemory Yes Yes No

42 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Table 7. Resource types and properties (continued)

Resource Type Available properties Is consumable Can be optimized Supports wildcards

FileSystem DisplayName No No Yes

FileSystemRoot No No Yes

FileSystemType No No No

FreeStorageCapacity No Yes No

TotalStorageCapacity Yes Yes No

NetworkSystem NetworkAddress No No No

NetworkSystem
HostName

No No Yes

When you define the requirements for a job definition, you can define the amount
of a consumable property which will be allocated to the job. When a resource
property is allocated to a job, the amount you specify is logically reserved for the
job. If another job is submitted which allocates a value greater than the remaining
capacity of the same consumable property, this job cannot run on the same
resource as the previous job because the required property is already reserved. If
no property allocation is specified in the job definition, the job can run on the same
resource as the previous job because the allocation mechanism applies only if both
jobs allocate the same property.

You can use the allocation mechanism to limit concurrent use of the same quantity
by several jobs and improve system performance.

To allocate a property for a job, use the allocation element in the JSDL file or the
Software Requirements and Hardware Requirements tabs in the Job Brokering
Definition Console.

This allocation type applies to computer systems. To allocate a property for a
resource other than a computer system, you define the resource whose property
you want to allocate in the Related resource pane and define the allocation setting
for one or more of its properties. You then define a relationship between the
resource and the related resource you created. In this way you define the related
resource and the allocated property as a requirement for the job to run.

Job definitions
This topic provides an overview of the possible content of job definitions and
describes how the different types of job definition content are added using the Job
Brokering Definition Console.

A job definition contains all the information required to determine the computer
system or systems on which a job could run, any scheduling and job balancing
rules that are to be applied when allocating resources, as well as the information
required to identify and run the application. It is defined using the Job Submission
Description Language (JSDL).

JSDL is an XML-based language used for specifying the characteristics and
requirements of a job, as well as instructions on how to manage and run the jobs.
A JSDL file can include the following types of information

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 43

Basic job information
Includes the job name, any job categories to which you want to assign it,
and any variables that are used in the job.

Variables can be used in several ways in a job definition. For example:
v A set of variables can describe a command and its arguments. These can

be added to program running information and within the script of the
job.

v Variables can also be used to identify resources, for example, a target
host.

The default value assigned to the variable in the job definition is used
when the job is run, unless it is overridden at submission time. See
Chapter 2, “Using Tivoli Workload Scheduler variables in dynamic
workload broker jobs,” on page 21 and “Using variables in job definitions”
on page 51.

Program running information
Identifies the script or executable to be run and, if necessary, standard
input, output, and error files and the working directory. If the job needs to
provide credentials these can also be specified.

You can define the required credentials to run a job if the credentials are
different from those under which the Tivoli Workload Scheduler agent
runs.

On Windows targets, jobs with no specified credentials, run under the user
account specified during the Tivoli Workload Scheduler agent installation,
unless the agent runs under the Local System account. In this case, any job
submitted to the agent runs under the default administrator's account.

On UNIX targets, jobs with no specified credentials, run under root.

Required resource specifications
Enables dynamic workload broker to identify the computer systems on
which the job can run based on hardware and software requirements.

Related requirements
Allow you to specify required relationships between resources and
co-requisite resources for a job.

Allocation
Resource quantity to be allocated or required.

Optimization and load-balancing policies.

The following load balancing policies are available:

Balance load between resources by number of jobs running
Jobs are assigned to targets based on the number of jobs currently
running on each target. The objective is to ensure that each
resource runs the same number of jobs during the same time
interval. This policy is the default. It is suitable for situations
where many similar jobs, which consume similar quantities of
system resources, are to be run on a set of resources

Balance load between resources by optimization objective
You define an objective by selecting a resource type and related
resource property and specifying the objective to maximize or
minimize the property. For example, you could balance load with
the aim of keeping the amount of free physical memory available
on operating system resources as high as possible. The objective

44 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

would be set to maximize free physical memory and when jobs
with this objective are submitted, they are allocated to available
resources so that more jobs go to the resources that currently have
the greatest amount of free physical memory.

Select best resource by optimization objective
You define the optimization objective in exactly the same way as
described for the Balance load between resources by optimization
objective. However, when a job with this policy is submitted, it
would always be assigned to the resource that best matched the
objective. For example, if the objective is to maximize free physical
memory, the job would run on the resource that had the highest
amount of free physical memory at submission time.

Enterprise Workload Manager
If you have Enterprise Workload Manager installed, you can define
jobs with an optimization policy to use the load-balancing
capabilities of this product.

In the JSDL schema, the Optimization page corresponds to the
optimization element.

Scheduling and running requirements.
Allows you to define a priority, the time a job can wait for resources before
failing, and recovery actions in the event of a failure.

The maximum priority is 100 and priority settings between 90 and 100
should only be used for critical jobs. Jobs with these priorities are always
allocated resources ahead of other waiting jobs regardless of how long the
other jobs have been waiting. At lower priorities than 90, jobs are allocated
resources based on the priority setting and the age of the job. As time
passes, jobs with a low priority setting increase their priority so that they
eventually are allocated resources even if jobs with higher initial priorities
are waiting.

The Job Brokering Definition Console graphical interface allows you to create and
edit job definitions based on the JSDL schema. Fields in the Job Brokering
Definition Console correspond to elements in the JSDL schema. When creating a
job definition using the Job Brokering Definition Console, you can view the job
definition structure in the Outline pane.

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 45

The JSDL schema offers great flexibility in defining jobs and their requirements. A
job can have a very open definition, with few defined requirements, allowing it to
run on a wide range of resources and to follow default rules for load balancing.
Other jobs could have a much more detailed set of hardware and software
requirements, as well as specific resource allocations and a load balancing policy.
Using the graphical interface simplifies the task of creating JSDL files and
eliminates many of the risks of error that occur when the files are edited manually.
The different elements that make up a job definition are available, in many cases
with a set of fixed values from which you can choose. Information defined in the
Job Brokering Definition Console is validated, ensuring that any values you have
entered are correct and consistent with each other.

In addition, the Job Brokering Definition Console also includes content assistance
that provides server-side values for several fields on the interface, for example,
candidate host names and logical resources, to name a few. Fields with content
assistance are identified by a light-bulb icon next to the field. Position your mouse
over the light-bulb and press Ctrl + Space to display a list of possible values.
Server-side values are populated using the server cache for the currently active
server connection. Server data is cached automatically when the initial connection
to a server is made or each time the server connection is changed. You can refresh
the cache at any time, for example, if you have defined a new resource
requirement on the server, by selecting Server > Refresh Server Data Cache.

When you save the file in the Job Brokering Definition Console, the JSDL file is
checked against an .xsd file provided with the product installation which contains
the syntax rules. A message is displayed if a syntax error is encountered in the

Figure 5. Job Brokering Definition Console main page

46 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

JSDL file, allowing you to correct the error. You can save the JSDL files locally or
upload them as job definitions in the Job Repository where they become available
for submission.

Resources in the job definition
This topic provides an overview of how resources and their properties are used in
the job definition to identify possible targets, to reserve allocations of consumable
resources, and to optimize load balancing between available resources.

An understanding of physical and logical resources and their properties is the key
to creating a job definition that accurately targets suitable resources for running the
job, determines the resource allocation requirement, and contributes to balancing
the load between available resources. Each resource has one or more properties
associated with it. Properties can have the following characteristics:

Is consumable
Properties of resources that are consumable have finite amount associated
with them which can be consumed by the jobs that are allocated to the
resource. For example, a computer system has a finite number of
processors.

Can be optimized
Some properties can be used to define optimization objectives, which
determine how load is to be balanced when jobs are allocated to a group of
resources. For example, you could choose to allocate a job to the matching
resource that has the lowest CPU usage.

Supports wildcards
Some properties can be specified in the job definition using wildcards. For
example, a requirement for a particular series of computer models could be
defined by specifying the model using wildcards.

Table 8 shows the different resource types that can be included in a job definition
and their available properties.

Table 8. Resource types and properties

Resource Type Available properties Is consumable Can be optimized Supports wildcards

ComputerSystem CPUUtilization No Yes No

HostName No No Yes

Manufacturer No No Yes

Model No No Yes

NumOfProcessors Yes Yes No

ProcessingSpeed No Yes No

ProcessorType No No No

LogicalResource DisplayName No No Yes

SubType No No Yes

Quantity Yes Yes No

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 47

Table 8. Resource types and properties (continued)

Resource Type Available properties Is consumable Can be optimized Supports wildcards

OperatingSystem DisplayName No No Yes

FreePhysicalMemory No Yes No

FreeSwapSpace No Yes No

FreeVirtualMemory No Yes No

OperatingSystemType No No No

OperatingSystem
Version

No No No

TotalPhysicalMemory Yes Yes No

TotalSwapSpace Yes Yes No

TotalVirtualMemory Yes Yes No

FileSystem DisplayName No No Yes

FileSystemRoot No No Yes

FileSystemType No No No

FreeStorageCapacity No Yes No

TotalStorageCapacity Yes Yes No

NetworkSystem NetworkAddress No No No

NetworkSystem
HostName

No No Yes

Resource properties can be used in the job definition in the following ways:

Identifying targets for the job
On the Resources page of the Job Brokering Definition Console, you can
supply information about the resources required for the job. Using this
information, dynamic workload broker can identify the computer systems
on which the job could run. In addition to the basic hardware and software
requirements, you can use the Advanced Requirements tab to include
requirements for specific resource properties. For example, you can add a
requirement for a specific processor type or specify a required range of
processor speeds. In the JSDL schema, the Resources page corresponds to
the resources element.

When you define a resource requirement, the underlying relationship
between the required resource and the computer system which contains
the resource is automatically created by the Job Brokering Definition
Console to facilitate the usage of the product.

Resource property requirements to be used when identifying targets for job
can also be specified on the Related Resources page. A related resource
includes the following resource types:
v A set of hardware and software properties of a computer such as

operating system, file system, and network system.
v Logical resources, which are a flexible means of providing information

about your environment in addition to the information collected by the
hardware scan. For example, you could create logical resources to
represent applications, groups, licenses, or database access. A logical
resource can be linked to one or more specified computers or it can be a
freestanding global resource, available to all computers.

48 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Related resources have two main functions:

To specify additional requirements, making the matching criteria for
possible targets more precise

Targets can only match if they either contain or are associated with
the specified resource. In addition to defining the related resource
in the job definition, you must also define its relationship to the
target resource and specify the relationship type as contains or
associates with. Related resource that define hardware and
software properties always have a contains relationship while
logical resources often have an associates with relationship. For
example, if a related requirement for a logical resource that
represents a node-locked license is included, the target system
must be one of those that is associated with this resource, and
therefore a target where the license is available.

To specify global resources that must be available for the job to run
These related resources are not related to the target resource and
have no role in finding matching resources for the job to run on.
The resource must be available to the job at submission time. For
example, if a license required to run the software used by the job is
of a type that is not assigned to any computer, a logical resource
could be created to identify it and to track the number of licenses
that exist and that are in use. No computers are associated with
this logical resource and so it is referred to as a global resource,
available to all computers. The job definition includes a related
resource identifying the floating license logical resource and the
number of licenses required. Before the job can run, it must be
possible to meet this requirement.

In the JSDL schema, the Related Resources page corresponds to the
relatedResources element.

When the resource requirements for the job are defined, logical rules are
applied to determine whether the requirements are alternatives to each
other (OR) or whether they are inclusive (AND). In general, the different
types of requirements have an AND relationship, for example, if you
specify an operating system type, CPU architecture, and a value for
minimum physical memory, the target resource for the job must meet all of
these requirements.

Within the following requirement types, you can specify alternatives that
have an OR relationship:
v Candidate hosts
v Candidate CPU architectures
v Candidate operating systems

If several entries are added for any of these requirement types, they are
considered as alternatives. For example, if Linux, AIX, and HP-UX are
specified as candidate operating systems, the target resource for the job
must have one of these operating system types.

Within the following requirement types, all requirements specified must be
met by the target resource for the job.
v Logical resources
v File systems

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 49

For example, if you add Local Disk and CD ROM to the File system
requirements, the target resource for the job must have both a local disk
and a CD ROM.

Reserving resources
When defining the requirements for a job definition, you can define the
amount of a consumable property which will be allocated to the job. When
a resource property is allocated to a job, the amount you specify is
logically reserved for the job. If another job is submitted which allocates a
value greater than the remaining capacity of the same consumable
property, this job cannot run on the same resource as the previous job
because the required property is already reserved. If no property allocation
is specified in the job definition, the job can run on the same resource as
the previous job because the allocation mechanism applies only if both jobs
allocate the same property.

You can use the allocation mechanism to limit concurrent use of the same
quantity by several jobs and improve system performance.

On the Job Brokering Definition Console, you can allocate a specified
quantity of a consumable property. You can use the allocation pane from
the Advanced Requirements tab of the Resources page or you can define
a required resource and property in the Related resource page and specify
the amount of the property to be allocated. From the Advanced
Requirements tab on the Resources page, you can only allocate
consumable properties of computer system resources.

Defining load-balancing policies
You can use the Optimization page in the Job Brokering Definition
Console to define custom rules for load-balancing to be applied when the
job is submitted. The default method of load-balancing is to aim to
equalize the number of jobs running on each resource.

Dynamic workload broker provides two types of optimization policy types
that use rules based on resource properties:
v Balance load between resources by optimization objective
v Select best resource by optimization objective

For both policies, you define an objective to distribute jobs minimizing or
maximizing the property of a computer system, a file system, a logical
resource, or an operating system. For example, you could balance loads
with the aim of keeping the free physical memory available on operating
system resources as high as possible.

When the Balance load between resources by optimization objective
policy is used, jobs are distributed between matching resources based on a
statistical probability that the resource currently has highest amount of free
physical memory of all matching resources. When the Select best resource
by optimization objective policy is used, the job is allocated to the
resource that has the highest amount of free physical memory.

When defining an objective, you must select a resource that is included in
the job definition as part of the identification of targets for the job. For
example, if you want to define the objective to minimize free physical
memory, at least one operating system requirement must be included in
the job definition. This could be candidate operating systems, a physical or
virtual memory requirement, or a related requirement involving operating
system properties. Computer system properties are the exception to this

50 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

rule. Optimization objectives using computer system properties can be
always defined even if the job definition includes no explicit computer
system requirements.

For information about all available load balancing policies, see “Job
definitions” on page 43.

Using variables in job definitions
This section explains how to use variables to add flexibility to the job definitions.

There are two types of variables in a job definition:

Job variables
There are three types of job variables: String, Double, Integer. You can
define job variables in your job definition that are resolved or overwritten
at job submission time. This enables the job definition to be used for
different situations by specifying different values for the variable at
submission time. You define variables in the variable element, but you can
refer to the variable from several other elements.

You define variables and assign them values from the Overview page on
the Job Brokering Definition Console. Job variables are referenced in the
job definition in the format ${variable_name}. For example, to use a variable
to set the minimum amount of physical memory required for a job to 512
MB, do the following:
1. In the Variables pane of the Overview page, add the string variable

memory and assign it a value of 512.
2. On the Hardware Requirements tab of the Resources page, select

Range value for Physical memory and set the Minimum value to
${memory}.

When jobs are submitted, using Dynamic Workload Console, Tivoli
Workload Scheduler Task field, or the dynamic workload broker CLI,
default values for variables defined in the job definition can be overridden
and new variables can be added.

Environment variables
Environment variables are set in the run time environment for the dynamic
workload broker job definition. Environment variables can be used to
change the run time environment for the job on the assigned resource. This
enables you to change only the values of the environment variables when
you change the resources for the job definition. Environment variables are
referenced in the job definition in the format $variable_name where
variable_name is the name of the environment variable.

Environment variable values cannot be set or overwritten when the job is
submitted.

Using JSDL job definition templates
Use job definition templates to be able to run multiple jobs based on a single JSDL
document, or to turn a traditional job into a dynamic job without the need to create
a specific JSDL definition for it.

You have two options for writing the JSDL job definitions for the workload you
want to submit with dynamic workload broker:
v Writing a separate definition for each job

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 51

v Writing a generalized definition that you can use as a template to run more jobs

Writing and using templates is an option that lets you reuse the same JSDL
document on multiple jobs when they use the same resources and candidate hosts
and share similar scheduling and optimization preferences. This requires that you
also define an extended agent workstation for each template you implement, so
that at runtime the JSDL template can be properly identified by selecting the
extended agent on which the job you want to run is defined. In this way, you can
make up classes of jobs where all the jobs that belong to the same class are defined
to run on the same extended agent and therefore select, by means of the dynamic
workload broker workstation, the same JSDL document to submit to the broker.

Traditional Tivoli Workload Scheduler jobs can be routed to dynamic workload
broker by simply changing their CPU to an appropriate extended agent, without
changing the job definition and without requiring a different JSDL definition for
each job. This is the recommended way for changing static workload into dynamic
workload in Tivoli Workload Scheduler.

Writing a JSDL job definition template

Specific, prepackaged JSDL templates that you can fill in do not exist. Rather, you
work a number of steps so that you can write in the Job Brokering Definition
Console a JSDL file that can be referenced by more Tivoli Workload Scheduler job
definitions.

To write a template you use the following:
v The composer command line or the Dynamic Workload Console to define

extended agents (with their access method) and to create or modify job
definitions in Tivoli Workload Scheduler.

v The Job Brokering Definition Console to write the JSDL file that you then use as
a template.

The steps are:
1. In the Job Brokering Definition Console, you create a JSDL document, give it a

name, and save it in the Job Repository of dynamic workload broker. Like for
regular job definitions, fill in the data throughout the pages of the Job
Brokering Definition Console, specifying the required resources, and
optimization and scheduling details. Unlike you do in regular job definitions, in
the Application page, after setting the Type to Executable (or to Extended Job),
specify the following variable name in the Script (or Task string) field:
${tws.job.taskstring}

2. With composer or the Dynamic Workload Console define a workstation of type
extended agent hosted by the dynamic workload broker workstation.
If you need background information about extended agents, see the Tivoli
Workload Scheduler: User's Guide and Reference, SC32-1274. For the purpose of
creating the template, however, you only need to know the following facts
about an extended agent:
v It is a logical definition that must be hosted by a physical workstation. In

this case the physical workstation must always be the dynamic workload
broker workstation. This workstation can host as many extended agents as
you need.

v It requires an access method. An access method can be a complex program,
but in this case it is only a statement that references the name of the JSDL

52 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

file that will be your template. The access method statement is included in
the definition of the extended agent and must have the following syntax:
ACCESS "/jsdl/filename_of_the_ JSDL_template -var name=value,name=value,..."

where -var name=value is optional and represents one or more variables
passed by the dynamic workload broker workstation to dynamic workload
broker at job submission time.

3. Add the extended agent to the plan as you do with any other workstation. The
dynamic workload broker workstation has the task of managing the lifecycle of
the extended agent, notifying the master domain manager that it is up and
running.

When jobs are run on the extended agent, they are routed to the dynamic
workload broker workstation, which handles them differently from other jobs.
Instead of searching for the name of the JSDL definition in the task string of the
job, the dynamic workload broker workstation:
1. Gets the name of the target JSDL from the access method, and passes the task

string as a value for variable ${tws.job.taskstring}.
2. The task string value is replaced in the script element of the target JSDL, and is

used as a command string to run on the target agent that is dynamically
selected by the dynamic workload broker.
Thus, the JSDL definition invoked by the dynamic workload broker
workstation works as a sort of template that you can use to run different task
strings defined in different Tivoli Workload Scheduler jobs: the same JSDL
document is reused for multiple jobs.

Example

You want to exploit dynamic workload broker to run a job named SUBMIT_JOBXA
and you want to use a JSDL template. The following definitions accomplish this:
1. The definition of the dynamic workload broker workstation. It is named

DGCENTER_DWB and it is of type BROKER. There can be only one dynamic
workload broker workstation running at a time in a Tivoli Workload Scheduler
network (this applies also to the dynamic workload broker server).
CPUNAME DGCENTER_DWB

OS OTHER
NODE DGCENTER TCPADDR 41111
ENGINEADDR 31111
DOMAIN MASTERDM
FOR MAESTRO

TYPE BROKER
AUTOLINK ON
BEHINDFIREWALL OFF
FULLSTATUS OFF

END

2. The definition of extended agent DGCENTER_DWBXA. The extended agent must:
v Be hosted by the dynamic workload broker workstation (DGCENTER_DWB in this

example).
v Include the access method. While normally the ACCESS keyword is followed

by the name of the program that implements the specific access method, in
the case of JSDL templates it needs only to define the name of the JSDL
document you use as template - that must be stored in the dynamic
workload broker Job Repository in the Tivoli Workload Scheduler database
and available in a local folder in the workstation where you run the Job

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 53

Brokering Definition Console- and whatever other parameters you want to
use. These items must be enclosed between double quotes.
This requires that you created the JSDL document you will be using as a
template (named SJT in this example), defining the required resources,
candidate hosts, and scheduling and optimization preferences, and specifying
${tws.job.taskstring} in the Script field of the executable.

CPUNAME DGCENTER_DWBXA
OS OTHER
NODE DGCENTER TCPADDR 41111
FOR MAESTRO HOST DGCENTER_DWB ACCESS "/jsdl/SJT -var

target=D:\vmware,RES=RES1"
TYPE X-AGENT
AUTOLINK OFF
BEHINDFIREWALL OFF
FULLSTATUS OFF

END

3. The definition of job SUBMIT_JOBXA in Tivoli Workload Scheduler:
DGCENTER_DWBXA#SUBMIT_JOBXA
SCRIPTNAME "C:\TWS\Utils\Jobs\javacount_on.bat"
STREAMLOGON Administrator
DESCRIPTION "Added by composer."
TASKTYPE WINDOWS
RECOVERY STOP

The fact that the job is defined to run on extended agent DGCENTER_DWBXA,
hosted by the dynamic workload broker workstation and matched with the SJT
JSDL definition, drives the process that:
a. Submits the job via dynamic workload broker
b. Uses the specifications of the SJT JSDL definition
c. Replaces variable ${tws.job.taskstring} in SJT with the task string of

SUBMIT_JOBXA, that is:
C:\TWS\Utils\Jobs\javacount_on.bat

Scenarios for creating job definitions
These scenarios provide examples of creating job definitions with different types of
requirements.

JSDL and the Job Brokering Definition Console provide very flexible tools for
defining jobs. The following scenarios provide examples of how to set up a job
definition to achieve your objectives for identification of targets, resource
allocation, and load balancing:
v “Scenario: Creating a job definition using a computer resource group” on page

55.
This scenario demonstrates the use of a resource group to specify candidate
target systems.

v “Scenario: Creating a job definition using a logical resource group” on page 55.
This scenario demonstrates the use of a resource group to specify logical
resources required for the job..

v “Scenario: Creating a job definition for a job to run on x86 processors” on page
56
This scenario demonstrates the use of advanced requirements for resources and
the use of resource properties for defining load-balancing rules.

v “Scenario: Creating a job definition for a script to run on a specific operating
system” on page 58

54 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

This scenario demonstrates the creation of relationships between an operating
system type software resource and an additional resource requirement.

v “Scenario: Alternative operating system requirements” on page 59
This scenario demonstrates the definition of two resource requirements related to
specific operating system types and a minimum free physical memory
requirement.

Scenario: Creating a job definition using a computer resource
group

In this scenario, a job is created to run the inventory update program, selecting the
target system from the invadmin resource group set up to include the computers
that are suitable for running the script.

To create a job definition that does this, perform the following steps:
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named compgroupjob. The job
definition opens at the Overview page with the job name assigned.

2. Open the Application page and identify and attach the script, as follows:
a. In the Type menu, select Executable.
b. In the Executable pane, select the Executable File radio button.
c. Click Browse and locate the executable file.
d. Click OK.

3. Open the Resources page and specify the resource group, as follows:
a. Select the Advanced Requirements tab.
b. In the Resource Group pane, click Add. The Resource Group Details dialog

box is displayed.
c. In the Group Name field, type invadmin (the resource group name, as

defined in the Dynamic Workload Console).
4. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd
http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle JSDL-Native.xsd"
description="Run inventory update script on a computer from the
invadmin resource group.
" name="compgroupjob">

<jsdl:application name="executable">
<jsdle:executable path="/opt/invupdate">

</jsdle:executable>
</jsdl:application>
<jsdl:resources>

<jsdl:group name="invadmin"/>
</jsdl:resources>

</jsdl:jobDefinition>

Scenario: Creating a job definition using a logical resource
group

In this scenario, the target for the job is determined by several requirements
defined as logical resources. A resource group has been created to include all the
logical resources required for the job.

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 55

To create a job definition that does this, perform the following steps:
1. In the Job Brokering Definition Console selectFile > New > Job brokering

definition and create a new job definition named loggroupjob. The job
definition opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Related Resources page and create a requirement for a logical
resource, as follows:
a. In the Resource Requirements pane, click Add. The Resource Requirement

Details dialog box is displayed.
b. In the ID field, specify a meaningful ID, in this example, loggroup.

4. Open the Resources page and create a relationship to the resource requirement,
as follows:
a. Select the Advanced Requirements tab.
b. In the Relationships pane, click Add. The Relationship Details dialog box is

displayed.
c. In the Type menu, select Associates with.
d. In the Target menu, select the resource requirement that you created and

click OK.
5. Switch back to the Related Resources page and add the logical resource group

as follows:
a. In the Resource Group pane, click Add. The Resource Group Details dialog

box is displayed.
b. In the Group Name field, type the resource group name, as defined in the

Dynamic Workload Console.
6. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd"
description="A job whose requirements are defined by a number of logical
resources. " name="loggroupjob">

<jsdl:application name="executable">
<jsdle:executable path="/opt/myExecutable">
</jsdle:executable>

</jsdl:application>
<jsdl:resources>

<jsdl:relationship target="loggroup" type="AssociatesWith"/>
</jsdl:resources>
<jsdl:relatedResources id="loggroup" type="LogicalResource">

<jsdl:group name="logresgroup"/>
</jsdl:relatedResources>

</jsdl:jobDefinition>

Scenario: Creating a job definition for a job to run on x86
processors

In this scenario, a job is created to run the application, appx86. The application
must run on a workstation with an x86 processor where the CPU usage between 3
and 30%. Load balancing is to be defined by an objective to keep CPU use on
matching resources to a minimum.

To create the job definition, perform the following steps:

56 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

1. In the Job Brokering Definition Console select File > New > Job brokering
definition and create a new job definition named x86job. The job definition
opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the appx86
application that the job is to run.

3. Open the Resources page and specify the processor and CPU usage
requirements as follows:
a. Select the Advanced Requirements tab.
b. Click Add Requirement. The Resource Property Details dialog box is

displayed.
c. In the Property Name menu, select CPU Utilization.
d. In the Property Value section, select the Range Value radio button and

assign values of 3 to Minimum and 30 to Maximum.
e. Click Add Requirement. The Resource Property Details dialog box is

displayed.
f. In the Property Name menu, select Processor type.
g. In the Property Value section, select the Exact Value radio button and

assign a values of x86.
4. Open the Optimization page and specify the load balancing requirement as

follows:
a. In the Type menu, select Balance load between resources by optimization

objective.
b. In the Resource Type menu, select Computer System.
c. In the Resource Property menu, select CPU Utilization.
d. In the Optimization Objective menu, select the Minimize.

5. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl JSDL.xsd"
description="Job to run on X86 processors" name="x86job">
<jsdl:application name="executable">

<jsdle:executable path="/opt/appx86">
</jsdle:executable>

</jsdl:application>
<jsdl:resources>

<jsdl:properties>
<jsdl:requirement propertyName="CPUUtilization">

<jsdl:range>
<jsdl:minimum>3</jsdl:minimum>
<jsdl:maximum>30</jsdl:maximum>

</jsdl:range>
</jsdl:requirement>
<jsdl:requirement propertyName="ProcessorType">

<jsdl:exact>x86</jsdl:exact>
</jsdl:requirement>

</jsdl:properties>
</jsdl:resources>
<jsdl:optimization name="JPT_JSDLOptimizationPolicyType">

<jsdl:objective propertyObjective="minimize"
resourcePropertyName="CPUUtilization"
resourceType="ComputerSystem"/>

</jsdl:optimization>
</jsdl:optimization>
</jsdl:jobDefinition>

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 57

Scenario: Creating a job definition for a script to run on a
specific operating system

In this scenario, a job is created to run a script on a Red Hat Enterprise Linux
system.

By specifying candidate operating systems, you can define the type of operating
system on which a job is to run, in this case Linux. To direct the job to a specific
flavor of Linux, you must define a related resource and link it to the job resources
by creating a relationship. To create a job definition that does this, perform the
following steps:
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named rhjob. The job definition
opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Resources page and specify the operating system type requirement,
as follows:
a. Select the Software Requirements tab.
b. In the Candidate Operating Systems pane, click Add. The Operating

System Details dialog box is displayed.
c. In the Type menu, select LINUX and click OK.

4. Open the Related Resources page and create a resource requirement for the Red
Hat flavor of Linux, as follows:
a. In the Resource Requirements pane, click Add. The Resource Requirement

Details dialog box is displayed.
b. In the ID field, specify a meaningful ID, in this example, redhat.
c. In the Type menu, select Operating System.
d. In the Resource Properties pane, click Add Requirement. The Resource

Property details dialog box is displayed.
e. In the Property Name menu, select Display Name.
f. In the Property Value , type Red*.

5.

6. Switch back to the Resources page to link the resource requirement to the
operating system resource.
a. Select the Advanced Requirements tab.
b. In the Relationships pane, click Add. The Relationship Details dialog box is

displayed.
c. In the Type menu, select Contains.
d. In the Target menu, select the Red Hat resource requirement that you

created and click OK.
7. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl"
xsi:schemaLocation="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdl
JSDL.xsd" description="Job to run on Red Hat Linux" name="rhjob">

<jsdl:application name="executable">
<jsdle:executable path="/opt/myExecutable">
</jsdle:executable>

</jsdl:application>

58 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

<jsdl:resources> <jsdl:resources>
<jsdl:candidateOperatingSystems>

<jsdl:operatingSystem type="LINUX"/>
</jsdl:candidateOperatingSystems>
<jsdl:relationship target="redhat" type="Contains"/>

</jsdl:resources>
<jsdl:relatedResources id="redhat" type="OperatingSystem">

<jsdl:properties>
<jsdl:requirement propertyName="DisplayName">

<jsdl:exact>red*</jsdl:exact>
</jsdl:requirement>

</jsdl:properties>
</jsdl:relatedResources>

</jsdl:jobDefinition>

Scenario: Alternative operating system requirements
In this scenario, a definition is created for a job that can run on either a Linux or
an AIX computer.

The job can run on Linux operating systems with a minimum of 512 MB of RAM
or on AIX operating systems with a minimum of 1024 MB of RAM. The job
definition must include a resource requirement that specifies the two alternative
requirements.

To create job definition for this job, perform the following steps:
1. In the Job Brokering Definition Console select File > New > Job brokering

definition and create a new job definition named jobWithRequirementsByOS.
The job definition opens at the Overview page with the job name assigned.

2. Open the Application page and define the required information for the
application that the job is to run.

3. Open the Related Resources page.
4. In the Resource Requirements pane, click Add then specify a meaningful value

for the ID field. In this example it is OperatingSystemType.
5. In the Resource Properties pane, define the logic that describes the two

alternative operating system requirements, as follows:
a. Click Add OR Operand to indicate that you are defining alternatives.
b. Highlight the OR operand and click Add AND Operand to indicate that the

alternative includes more than requirement.
c. Highlight the AND operand and click Add Requirement.
d. In the Resource Property Details dialog, select Operating System Type from

the Property Name menu and type LINUX in the Property value field.
e. Highlight the AND operand again and click Add Requirement.
f. In the Resource Property Details dialog, select Total Physical Memory from

the Property Name menu and type 512 in the Property value field.
g. Highlight the OR operand again and click Add AND Operand to add the

requirements for the second alternative.
h. Highlight the new AND operand and click Add Requirement.
i. In the Resource Property Details dialog, select Operating System Type from

the Property Name menu and type AIX in the Property value field.
j. Highlight the AND operand again and click Add Requirement.
k. In the Resource Property Details dialog, select Total Physical Memory from

the Property Name menu and type 1024 in the Property value field.

Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console 59

6. Open the Resources page and create a relationship to the resource requirement,
as follows:
a. Select the Advanced Requirements tab.
b. In the Relationships pane, click Add. The Relationship Details dialog box is

displayed.
c. In the Type menu, select Contains.
d. In the Target menu, select the resource requirement OperatingSystemType

and click OK.
7. Select File > Save to save the job definition file.

The JSDL file created for this scenario has the following syntax:
<jsdl:jobDefinition xmlns:jsdl="http://www.ibm.com/xmlns/prod/scheduling/

1.0/jsdl" xmlns:jsdle="http://www.ibm.com/xmlns/prod/scheduling/1.0/jsdle"
xmlns:xmi="http://www.omg.org/XMI" xmi:version="2.0" description="This job
has different requirements for memory based on the operating system it will
run on " name="jobWithRequirementsByOS">

<jsdl:application name="executable">
<jsdle:executable path="/opt/myExecutable">
</jsdle:executable>

</jsdl:application>
<jsdl:resources>

<jsdl:relationship target="OperatingSystemType" type="Contains"/>
</jsdl:resources>
<jsdl:relatedResources id="OperatingSystemType" type="OperatingSystem">

<jsdl:properties>
<jsdl:or>

<jsdl:and>
<jsdl:requirement propertyName="OperatingSystemType">

<jsdl:exact>LINUX</jsdl:exact>
</jsdl:requirement>
<jsdl:requirement propertyName="TotalPhysicalMemory">

<jsdl:range>
<jsdl:minimum>512</jsdl:minimum>

</jsdl:range>
</jsdl:requirement>

</jsdl:and>
<jsdl:and>

<jsdl:requirement propertyName="OperatingSystemType">
<jsdl:exact>AIX</jsdl:exact>

</jsdl:requirement>
<jsdl:requirement propertyName="TotalPhysicalMemory">

<jsdl:range>
<jsdl:minimum>1024</jsdl:minimum>

</jsdl:range>
</jsdl:requirement>

</jsdl:and>
</jsdl:or>

</jsdl:properties>
</jsdl:relatedResources>

</jsdl:jobDefinition>

60 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 9. Submitting and tracking jobs

Although you should normally use the standard Tivoli Workload Scheduler means
to schedule and submit workload, there is also an additional way to submit jobs
directly to dynamic scheduling using either the Dynamic Workload Console or the
dynamic workload broker command line, described in the next chapter. This
implies that you only need to write a JSDL job definition. You do not need to write
a job definition in Tivoli Workload Scheduler and the dynamic workload broker
workstation does not come into play. Choosing to do so, however, results in not
exploiting the scheduling and choreography services of Tivoli Workload Scheduler.
This chapter explains how to submit and track jobs using the Dynamic Workload
Console.

Job definitions are stored in the Job Repository and you search for them and select
them when the job needs to be submitted. At submission time, you can also specify
that a job run on the same resource as a job that has previously run. The job
definition provides all necessary parameters for a job to run, however, you can add
to and change the parameters defined in the job definition for the job instance you
are submitting. This does not change the job definition stored in the Job
Repository.

The lifecycle of a job involves the following sequence of phases:
1. Submission of the job to the Job Dispatcher.
2. Job scheduling.
3. Allocation of resources by the Resource Advisor.
4. Job execution.
5. Job status monitoring.

Using the Dynamic Workload Console, you can manage the whole lifecycle of a job
by performing the following task:
v “Monitoring submitted jobs” on page 63

Submitting jobs with affinity relationships
An affinity relationship is established between two or more jobs when you want
them to run on the same resource.

An affinity relationship is useful when the results of one job are required for the
next job to run. You can define an affinity relationship between two or more jobs in
the following ways:
v “Submitting a job with affinity from the command line”
v Chapter 4, “Defining affinity relationships,” on page 27 in Tivoli Workload

Scheduler.

Submitting a job with affinity from the command line

The jobsubmit command requires a job ID or an alias name for the affine job.

Submit the following command to make the job defined in job definition
WinJob2.jsdl, with the alias WJ220070606, run on the same resource as the
previously run job, WinJob1, which was submitted with the alias, WJ120070606:

© Copyright IBM Corp. 2009, 2011 61

jobsubmit -jsdl WinJob2.jsdl -alias WJ220070606 -affinity alias=WJ120070606

Submitting jobs with variables
When you submit a job, you can define or change a variable to be used by the job.

During job submission, you can define variables that are to be used by the job
itself or to assign the job to a resource. You can add new variables or override the
default values for variables that are included in the job definition. For more
information about including variables in the job definitions see “Using variables in
job definitions” on page 51. At submission time, you can add or change variables
in the following ways:
v “Submitting a job with variables from the command line”
v Chapter 2, “Using Tivoli Workload Scheduler variables in dynamic workload

broker jobs,” on page 21 in Tivoli Workload Scheduler.

Submitting a job with variables from the command line

The jobsubmit command submits jobs from the command line interface. You can
include arguments to change the value of predefined variables and add new ones.
For example, the job definition for Job1 includes the variable memory with the value
512 which is used to set the free physical memory requirement. To increase the
requirement to 1024 when submitting the job, issue the following command:
jobsubmit -jdname Job1 -var memory=1024

Job statuses
This section describes all supported statuses for a job as returned both by the
command line interface and by the Dynamic Workload Console. It also lists the
operations a user can perform depending on the status the job is in.

Table 9. Job statuses and supported operations

Dynamic
Workload
Console status

Icon Command line status
You can cancel
the job

You can browse
the job output

You can
define
affinity

Run failed RED FAILED_
EXECUTION

' '

Resource
allocation failed

RED RESOURCE_
ALLOCATION_
FAILED

Unable to start RED NOT_EXECUTED '

Unknown YELLOW UNKNOWN ' '

Submitted WAITING SUBMITTED '

Waiting for
resources

WAITING WAITING_FOR_
RESOURCES

'

Resource
allocation
received

WAITING RESOURCE_
ALLOCATION_
RECEIVED

'

Submitted to
agent

WAITING SUBMITTED_
TO_ENDPOINT

' '

Waiting for
reallocation

WAITING RESOURCE_
REALLOCATE

'

62 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Table 9. Job statuses and supported operations (continued)

Dynamic
Workload
Console status

Icon Command line status
You can cancel
the job

You can browse
the job output

You can
define
affinity

Cancel pending ABORT PENDING_
CANCEL

' '

Cancel allocation ABORT CANCEL_
ALLOCATION

' '

Canceled ABORT CANCELLED ' '

Running RUNNING EXECUTING ' ' '

Completed
successfully

GREEN SUCCEEDED_
EXECUTION

' '

Note: You can define an affinity relationship with a job in Canceled state only if
the job was canceled while running.

Monitoring submitted jobs
A job instance is a job that is submitted to run at a specific time. You can track the
outcome of a submitted job from the Dynamic Workload Console.

Prerequisite:A job must be submitted to dynamic workload broker before you can
view its instances. Submitted jobs are stored in the Job Repository for a default
time interval. See the Tivoli Workload Scheduler: Administration Guide, SC23-9113 for
information about configuring this interval in the JobDispatcherConfig.properties
file. You can access the following information about job instances:
v Status of the job instance.
v The host name of the computer where the job instance ran.
v The return code of the job instance.
v The date and time the job was submitted.
v The date and time the job started and finished running.

For example, to view all jobs that have resulted in error within the last 24 hours,
follow these steps:
1. In the console navigation tree, expand Tracking and click Job Instances. The

Track Job Instance Search Criteria page is displayed
2. Specify the search criteria for the job instances as follows:

a. In the Submission Time section, select the Last 24 Hours radio button.
b. In the Job Status section, select Error Conditions.
c. Click Search.

The results are displayed in the Job Tracking page.

As an alternative, you can take the following steps:
1. In the console navigation tree, expand Definitions and click Jobs. The Job

Definition Search Criteria page is displayed.
2. Specify the search criteria for the job definition associated with the job instance

that you want to view.
3. Select the job for which you want to show instances.

Chapter 9. Submitting and tracking jobs 63

4. Click Show Instances. The results are displayed in the Job Definitions Search
Result page.

Once a job is submitted to the Job Dispatcher, it goes through the phases of job
scheduling, allocation of resources, and finally, job execution. Problems might occur
along the way, and there are specific job statuses that identify at which point
things went wrong. The following is a list of job statuses that a job can assume
after it is submitted to be run:

Job completing successfully
The job goes through the following statuses: Submitted > Waiting for
resources > Resource allocation received > Submitted to agent > Running
> Completed successfully.

Job being canceled
The job goes through the following statuses: Submitted > Waiting for
resources > Resource allocation received > Submitted to agent > Running
> Cancel pending > Canceled.

Job being reallocated
The job is allocated to a computer which is temporarily unreachable, for
example because of a network problem. The job goes through the
following statuses: Submitted > Waiting for resources > Resource
allocation received > Waiting for reallocation > Waiting for resources .

Job encountering an error
There can be several reasons for the error. Here are some examples:
v The job encounters an error because the selected working directory does

not exist on the target system. The job goes through the following
statuses: Submitted > Waiting for resources > Resource allocation
received > Submitted to agent > Unable to start. As the job cannot
start, no output is available.

v The job requires an operating system which is not available in the
environment. The job goes through the following statuses: Submitted >
Waiting for resources > Resource allocation failed.

v The job encounters an error because one of the parameters specified in
the job is not supported on the target system. The job goes through the
following statuses: Submitted > Waiting for resources > Resource
allocation received > Submitted to agent > Running > Run failed.

When viewing the job instance details for this job Job Tracking page, the
reason for the error is displayed. You can also use the ID indicated in the
Identifier field to retrieve more information on the job results, which is
stored in a series of log files on the computer where the job ran. The name
of the computer where the job ran is also indicated in the Job Tracking
page. Locate the computer and analyze the log files available in the folder
named with the job ID in the following path:
TWA_home/TWS/stdlist/JM/yyyy.mm.dd/archive

Every job has a compressed file whose name is the job ID, for example:
ed1d4933-964b-3f5e-8c73-f720919491d6.zip

The compressed file contains the following:

diagnostics.log
May or may not include diagnostic information.

64 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

jm_exit.properties
Includes the return code as well as other job statistics, like CPU
and memory usage.

out.log
Includes the full job output.

trace.log
Includes the output trace of the task launcher process spawned by
the Tivoli Workload Scheduler agent to run the job.

trace.log_cmd
Includes the command used to run the task launcher.

Chapter 9. Submitting and tracking jobs 65

66 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Chapter 10. Using the command line interface

Dynamic workload broker provides a command line for running a set of
commands. You can use the command line interface to save, submit, query,
monitor, cancel jobs, and view the job output. You can also archive database tables.

Commands are stored in the following location on the master domain manager:
TWA_home/TDWB/bin

The following commands are available:

Table 10. Dynamic workload broker commands

Command Purpose See

exportserverdata Downloads the list of
dynamic workload broker
instances from the Tivoli
Workload Scheduler database
to a temporary file. Use to
record a port number or host
name change.

“exportserverdata command
- downloading the list of
workload broker instances
from the database” on page
71

importserverdata Uploads the list of dynamic
workload broker instances
from the temporary file to
the Tivoli Workload
Scheduler database after you
are done recording a port
number or host name
change.

“importserverdata command
- uploading the list of
workload broker instances to
the database” on page 73

jobsubmit Submits a job to the Job
Dispatcher.

“jobsubmit command -
Submitting jobs” on page 74

jobdetails Returns property information
for the specified job.

“jobdetails command -
Viewing details on jobs” on
page 80

jobquery Returns a list of submitted
jobs matching the selection
criteria.

“jobquery command -
Performing queries on jobs”
on page 76

jobcancel Cancels a submitted job. “jobcancel command -
Canceling jobs” on page 82

jobstore Manages job definitions. “jobstore command -
Managing job definitions” on
page 83

jobgetexecutionlog Displays the results of
submitted jobs.

“jobgetexecutionlog
command - Viewing job
output” on page 85

movehistorydata Moves data present in the
Job Repository database to
the archive tables.

“movehistorydata command
- Maintaining the database
tables” on page 86

© Copyright IBM Corp. 2009, 2011 67

Table 10. Dynamic workload broker commands (continued)

Command Purpose See

resource Creates and manages
resources and groups.
Manages associated
computers.

By properly configuring the
CLIConfig.properties file on
the agent, you can run this
command also from any
connected Tivoli Workload
Scheduler agent. See “Using
the resource command from
an agent” on page 96 for
details.

“resource command -
Working with resources” on
page 88

Command-line syntax

This chapter uses the following special characters to define the syntax of
commands:

[] Identifies optional attributes. Attributes not enclosed in brackets are
required.

... Indicates that you can specify multiple values for the previous attribute.

| Indicates mutually exclusive information. You can use the attribute to the
left of the separator or the attribute to its right. You cannot use both
attributes in a single use of the command.

{} Delimits a set of mutually exclusive attributes when one of the attributes is
required. If the attributes are optional, they are enclosed in square brackets
([]).

\ Indicates that the syntax in an example wraps to the next line.

Command-line configuration file
The CLIConfig.properties file contains configuration information which is used
when typing commands. By default, arguments required when typing commands
are retrieved from this file, unless explicitly specified in the command syntax.

The CLIConfig.properties file is created at installation time and is located on the
master domain manager in the following path:
TWA_home/TDWB/config

Starting from this version of Tivoli Workload Scheduler, an additional instance of
this file is installed on every agent for users who want to be able to run the
resource command not only from the master but also from specific agents. See
“Using the resource command from an agent” on page 96 for details.

The CLIConfig.properties file contains the following set of parameters:

Dynamic workload broker default properties

ITDWBServerHost
Specifies the IP address of dynamic workload broker.

68 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

ITDWBServerPort
Specifies the number of the dynamic workload broker port. The
default value is 9550.

ITDWBServerSecurePort
Specifies the number of the dynamic workload broker port when
security is enabled. The default value is 9551.

use_secure_connection
Specifies whether secure connection must be used. The default
value is false.

KeyStore and trustStore file name and path

keyStore
Specifies the name and path of the keyStore file containing private
keys. A keyStore file contains both public keys and private keys.
Public keys are stored as signer certificates while private keys are
stored in the personal certificates. The default value is
/Certs/TDWBClientKeyFile.jks.

trustStore
Specifies the name and path of the trustStore file containing public
keys. A trustStore file is a key database file that contains public
keys. The public key is stored as a signer certificate. The keys are
used for a variety of purposes, including authentication and data
integrity. The default value is /Certs/TDWBClientTrustFile.jks.

Passwords for keyStore and trustStore files

keyStorepwd
Specifies the password for the keyStore file.

trustStorepwd
Specifies the password for the trustStore file.

File types for keyStore and trustStore files

keyStoreType
Specifies the file type for the keyStore file. The default value is JKS.

trustStoreType
Specifies the file type for the trustStore file. The default value is
JKS.

Default user ID and password for dynamic workload broker

tdwb_user
Specifies the user name for a user authorized to perform
operations on dynamic workload broker when security is enabled.
The default value is ibmschedcli. This password must be
previously defined on IBM WebSphere. For more information on
security considerations, see the Tivoli Workload Scheduler:
Administration Guide, SC23-9113.

tdwb_pwd
Specifies the password for a user authorized to perform operations
on dynamic workload broker when security is enabled. This
password must be previously defined on IBM WebSphere . For
more information on security considerations, refer to Tivoli
Workload Scheduler: Administration Guide.

Detail level for command-line log and trace information

Chapter 10. Using the command line interface 69

logger.Level
Specifies the detail level for the command-line trace and log files.
The command-line trace and log files are created in the following
location:

log file
TWA_home/TDWB/logs/Msg_cli.log.log

trace file
TWA_home/TDWB/logs/Trace_cli.log

The default value is INFO.

logger.consoleLevel
Specifies the detail level for the log and trace information to be
returned to standard output. The default value is FINE. Supported
values for both the consoleLevel and loggerLevel parameters are
as follows:

ALL Indicates that all messages are logged.

SEVERE
Indicates that serious error messages are logged.

WARNING
Indicates that warning messages are logged.

INFO Indicates that informational messages are logged.

CONFIG
Indicates that static configuration messages are logged.

FINE Indicates that tracing information is logged.

FINER
Indicates that detailed tracing information is logged.

FINEST
Indicates that highly detailed tracing information is logged.

OFF Indicates that logging is turned off.

logger.limit
Specifies the maximum size of a log file in bytes. The default value
is 400000. When the maximum size is reached, a new file is
created, until the maximum number of files is reached. When all
files reach the maximum size and the maximum number of files is
exceeded, the oldest file is re-written.

logger.count
Specifies the maximum number of log files. The default value is 6.
When the maximum size is reached, a new file is created, until the
maximum number of files is reached. When all files reach the
maximum size and the maximum number of files is exceeded, the
oldest file is re-written. When a new file is created the 0 suffix is
appended after the file extension. The file with the 0 suffix is
always the current file. Any older files are renumbered accordingly.

java.util.logging.FileHandler.pattern
Specifies that the trace information for the Java Virtual Machine is
logged in the Trace_cli.log file. The default value is INFO.

java.util.logging.FileHandler.limit
Specifies the maximum size of a trace file in bytes. The default

70 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

value is 400000. When the maximum size is reached, a new file is
created, until the maximum number of files is reached. When all
files reach the maximum size and the maximum number of files is
exceeded, the oldest file is re-written.

java.util.logging.FileHandler.count
Specifies the maximum number of trace files. The default value is
6. When the maximum size is reached, a new file is created, until
the maximum number of files is reached. When all files reach the
maximum size and the maximum number of files is exceeded, the
oldest file is re-written. When a new file is created the 0 suffix is
appended after the file extension. The file with the 0 suffix is
always the current file. Any older files are renumbered accordingly.

java.util.logging.FileHandler.formatter
Specifies the formatter to be used for the Trace_cli.log file. The
default value is com.ibm.logging.icl.jsr47.CBEFormatter.

DAO common configuration
This section defines the RDBMS settings for the exportserverdata,
importserverdata, and movehistorydata commands. These commands use
the RDBMS installed on dynamic workload broker These parameters are
valorized at installation time and should not be modified, except for
com.ibm.tdwb.dao.rdbms.useSSLConnections as noted below.

com.ibm.tdwb.dao.rdbms.rdbmsName
Specifies the RDBMS name.

com.ibm.tdwb.dao.rdbms.useDataSource
Specifies the data source to be used.

com.ibm.tdwb.dao.rdbms.jdbcPath
Specifies the path to the JDBC driver.

com.ibm.tdwb.dao.rdbms.jdbcDriver
Specifies the JDBC driver.

com.ibm.tdwb.dao.rdbms.userName
Specifies the name of the RDBMS user.

com.ibm.tdwb.dao.rdbms.password
Specifies the password of the RDBMS user.

com.ibm.tdwb.dao.rdbms.useSSLConnections
Specifies that access to the Tivoli Workload Scheduler DB2
database by some of the CLI commands is over SSL. Is set to FALSE
by default. You must set to TRUE, if the database is DB2 and you
use FIPS security, for the following commands to work:
v exportserverdata

v importserverdata

v movehistorydata

exportserverdata command - downloading the list of workload broker
instances from the database

Use the exportserverdata command to download the list of dynamic workload
broker instances from the Tivoli Workload Scheduler database and change a port
number or a host name.

Chapter 10. Using the command line interface 71

Syntax

exportserverdata ?

exportserverdata -dbUsr db_user_name -dbPwd db_user_password -exportFile
filename

Description

This command extracts a list of URIs (Uniform Resource Identifier) of all the
dynamic workload broker instances from the Tivoli Workload Scheduler database
and copies them to a temporary file so that, if either the hostname or the port
number of any of the instances listed are changed, the administrator can record
this information in the file and place it back in the database with the
importserverdata command. By default, the list of URIs is saved to the
server.properties file, located in the current directory.

This action is necessary because the list of dynamic workload broker instances
must be kept up-to-date at all times, since the Resource Advisor agents
periodically connect to the active instance to send their data about the resources
discovered in each computer. They are able to automatically switch between the
instances of this list and find the active one to copy these data in its Resource
Repository. Since the master domain manager and every backup master are
installed with a dynamic workload broker instance, the active dynamic workload
broker instance runs in the master domain manager, while an idle instance resides
in each backup master.

The URI pointing to each dynamic workload broker instance is the following:
https://hostname:port_number/JobManagerRESTWeb/JobScheduler

You can change only the hostname and the port number.

Important: The list is ordered. You can change the order of the instances as they
appear in this list, and the agents will follow this order. If you have several backup
masters and decide to follow a specific switching order when a master fails, you
can instruct the agents to switch to the right instance using this ordered list,
speeding up the transition time.

If your Tivoli Workload Scheduler database is DB2 and you use FIPS security, to
run this command successfully you need to have the
com.ibm.tdwb.dao.rdbms.useSSLConnections option set to TRUE in the
CLIConfig.properties file.

Options

? Displays help information.

-dbUsr db_user_name
The user name required to access the Tivoli Workload Scheduler database
server.

-dbPwd db_user_password
The user password required to access the Tivoli Workload Scheduler database
server.

-exportFile filename
The name of the temporary file where the URIs extracted from the database are
copied for editing. This text file is created when you run the command and

72 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

you can open it with any editor to change the hostname or the port number. If
you do not specify a path, the file is created in the same directory where the
command is located, that is:
<TWA_home>/TDWB/bin

If you do specify a different path, make sure the path exists before you run
this command.

Example

To download the current list of all (active and backup) dynamic workload broker
instances and copy them in a file named c:\myservers\uris160709, run:
exportserverdata -dbUsr twsadm -dbPwd fprefect -exportFile c:\myservers\uris160709

The command returns file uris160709, that looks like this:
https://accrec015:42127/JobManagerRESTWeb/JobScheduler
https://prodop099:52529/JobManagerRESTWeb/JobScheduler
https://prodop111:31116/JobManagerRESTWeb/JobScheduler

prodop099 is the active dynamic workload broker instance because is hosted by the
currently active master domain manager, whereas accrec015 and prodop111 are
idle because they are hosted by backup masters.

You can edit this file to apply your changes before using the importserverdata
command to upload the URIs back to the database.

See Also

“importserverdata command - uploading the list of workload broker instances to
the database”

importserverdata command - uploading the list of workload broker
instances to the database

Use the importserverdata command to upload the list of dynamic workload broker
instances to the Tivoli Workload Scheduler database after editing the temporary file
to change a port number or a host name.

Syntax

importserverdata ?

importserverdata -dbUsr db_user_name -dbPwd db_user_password -importFile
filename

Description

This command puts back the list of dynamic workload broker instances in the
Tivoli Workload Scheduler database from the temporary file where they were
previously downloaded with the exportserverdata command.

Use the exportserverdata and importserverdata commands if you have to record
any hostname or port number changes in the URIs of the instances. This is
necessary to keep the list of dynamic workload broker instances up-to-date at all
times, since the Resource Advisor agents periodically connect to the active instance

Chapter 10. Using the command line interface 73

to send their data about the resources discovered in each computer. They are able
to automatically switch between the instances of this list and find the active one to
copy these data in its Resource Repository. Since the master domain manager and
every backup master are installed with a dynamic workload broker instance, the
active dynamic workload broker instance runs in the master domain manager,
while an idle instance resides in each backup master.

Important: The list is ordered. You can change the order of the instances as they
appear in this list, and the agents will follow this order. If you have several backup
masters and decide to follow a specific switching order when a master fails, you
can instruct the agents to switch to the right instance using this ordered list,
speeding up the transition time.

If your Tivoli Workload Scheduler database is DB2 and you use FIPS security, to
run this command successfully you need to have the
com.ibm.tdwb.dao.rdbms.useSSLConnections option set to TRUE in the
CLIConfig.properties file.

Options

? Displays help information.

-dbUsr db_user_name
The user name required to access the Tivoli Workload Scheduler database
server.

-dbPwd db_user_password
The user password required to access the Tivoli Workload Scheduler database
server.

-importFile ffilename
The name of the temporary file you specified with the -exportFile keyword in
the exportserverdata command.

Example

To upload the edited list of dynamic workload broker instance URIs from file
c:\myservers\uris160709 to the Tivoli Workload Scheduler database, run:
importserverdata -dbUsr twsadm -dbPwd fprefect -importFile c:\myservers\uris160709

See Also

“exportserverdata command - downloading the list of workload broker instances
from the database” on page 71

jobsubmit command - Submitting jobs
Use the jobsubmit command to submit jobs to the Job Dispatcher.

Syntax

jobsubmit ?

jobsubmit [-usr user_name -pwd password] {-jsdl jsdl_file | -jdname
job_definition_name} [-alias job_alias] [-var variable=value...] [-affinity {jobid=job_id |
alias=alias}] [-configFile configuration_file]

74 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Description

This command submits a job to the Job Dispatcher. When the job is submitted, it is
assigned a unique ID, which can be used for retrieving information on and
canceling jobs.

You can use this command to submit jobs saved locally on the dynamic workload
broker server or saved in the Job Repository. To submit a local job, use the -jsdl
option and specify the path to the JSDL file. To submit a job saved in the Job
Repository, use the -jdname option and specify the job definition name.

When submitting jobs, you can also define an alias to be used as an alternative to
the job ID when performing queries on the job, or for defining subsequent jobs as
affine. To define affinity between two or more jobs, use the -affinity option when
submitting the subsequent jobs. You define jobs as affine when you want them to
run on the same resource, for example when the second job must use the results
generated by the previous job.

Options

? Displays help information.

-usr user_name
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-jsdl jsdl_file
Specifies the name and path to a local JSDL file which provides the parameters
for a job when it is submitted. This parameter is required when the jdname
parameter is not specified.

-jdname job_definition_name
Specifies the name of a job definition stored in the Job Repository database.
The job definition name is defined within the JSDL file and can be modified
only by editing the JSDL file. This parameter is required when the jsdl
parameter is not specified. To obtain this name, you can use the Definitions >
Jobs task from the Dynamic Workload Console console navigation tree, or the
jobstore command specifying one or more of the query options. For more
information on the jobstore command, see “jobstore command - Managing job
definitions” on page 83.

-alias job_alias
Indicates that an alias must be generated for the job being submitted. You can
use the alias as a user-friendly alternative to the job ID when performing
queries on the job. You can also use the alias when submitting new jobs so that
the new job is affine to the job having this alias. To define affinity between two
or more jobs, use the -affinity option when submitting the new jobs. You
define jobs as affine when you want them to run on the same resource. On
Windows systems, the maximum length for the alias is 200 characters, if you
used the default installation paths for WebSphere Application Server and
dynamic workload broker.

Chapter 10. Using the command line interface 75

-var variable=value
Specifies a variable and the associated value. You can also specify a list of
variables by separating them with a comma. This value overrides the value
specified when creating the JSDL file. You can also specify new variables
without previously defining them in the JSDL file.

-affinity jobid=job_id
Specifies that the current job is affine to a previously submitted job. To
establish the affinity relationship, specify the job ID for the previous job. The
job ID is automatically generated at submission time.

-affinity alias=alias
Specifies that the current job is affine to a previously submitted job. To
establish the affinity relationship, specify the job alias for the previous job. The
job alias is generated at submission time when you specify the -alias option.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 68.

Return Values

The jobsubmit command returns one of the following values:
0 Indicates that jobsubmit completed successfully.
< > 0 Indicates that jobsubmit failed.

Examples
1. To submit the local job test_job located in the /staging_area/accounts/ path

using the configuration parameters specified in the custom_config.properties
configuration file, type the following command:
jobsubmit -jsdl /staging_area/accounts/test_job -configFile
/opt/test/custom_config.properties

2. To submit the job definition domestic_accounts saved in the Job Repository,
type the following command:
jobsubmit -jdname domestic_accounts

See Also

“jobdetails command - Viewing details on jobs” on page 80

jobquery command - Performing queries on jobs
Use the jobquery command to perform advanced queries on submitted jobs.

Syntax

jobquery ?

76 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

jobquery [-usr user_name -pwd password] {[-status status...] [-submitter submitter]
[-name job_definition_name] [-alias job_alias] [-sdf submit_date_from] [-sdt
submit_date_to] [-jsdf job_start_date_from] [-jsdt job_start_date_to] [-jedf
job_end_date_from] [-jedt job_end_date_to]} [-configFile configuration_file]

Description

This command performs advanced queries on submitted jobs based on the
following attributes:
v job status
v name of the user who submitted the job
v job name
v job alias
v job submission date
v job start date
v job completion date

You can also use this command to retrieve the job ID generated at submission
time, which is required when running the jobstatus, jobdetails and jobcancel
commands. To retrieve the job ID, specify the -name option.

Options

? Displays help information.

-usr user name
Specifies the user name for a user authorized to perform operations on the
command line. This option is required when security is enabled and the user
name is not defined in the CLIConfig.properties configuration file (with the
tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This option is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-status status
Specifies the status of the jobs to be searched. Separate statuses using commas;
spaces are not supported. Supported statuses are as follows:

0 all supported statuses

1 submitted

2 waiting for resources

3 resource allocation received

4 submitted to agent

5 running

6 cancel pending

7 canceling allocation

8 waiting for reallocation

10 bound

41 resource allocation failed

Chapter 10. Using the command line interface 77

||

42 run failed

43 completed successfully

44 canceled

45 unknown job

46 job not started

48 error

-submitter submitter
Specifies the name of the user who submitted the job.

-name job_definition_name
Specifies the job name. This option returns the unique job ID, which can be
used for retrieving information on and canceling jobs. This option supports the
asterisk (*) wildcard character as described below:

as a single parameter
it must be enclosed in inverted commas, for example
C:\Program Files\TDWB\bin>jobquery -name "*"

This command returns a list of all submitted jobs.

to complete a job name
it does not require inverted commas, for example
C:\Program Files\TDWB\bin>jobquery -name batchsub*

This command returns a list of all submitted jobs starting with the
batchsub suffix.

-alias job_alias
Specifies the job alias. The job alias is generated at submission time using the
-alias option. For more information see “jobsubmit command - Submitting
jobs” on page 74.

-sdf submit_date_from
Specifies a time range starting from the date when the job was submitted. The
query is performed starting from the date you specified to the present date,
unless the -sdt option is specified. Use both the -sdf and -sdt options to define
a specific time range. Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-sdt submit_date_to
Specifies a time range starting from the date when the job was submitted. The
query is performed starting from the date when the dynamic workload broker
database was populated to the date you specified, unless the -sdf option is
specified. Use both the -sdf and -sdt options to define a specific time range.
Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-jsdf job_start_date_from
Specifies a time range starting from the date when the job started. The query is
performed starting from the date you specified to the present date, unless the
-jsdt option is specified. Use both the -jsdf and -jsdt options to define a
specific time range. Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-jsdt job_start_date_to
Specifies a time range starting from the date when the job started. The query is
performed starting from the date when the dynamic workload broker database
was populated to the date you specified, unless the -jsdf option is specified.
Use both the -jsdf and -jsdt options to define a specific time range. Specify the
date in the dd/MM/yyyy-hh:mm:ss format.

78 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

||

-jedf job_end_date_from
Specifies a time range starting from the date when the job completed. The
query is performed starting from the date you specified to the present date,
unless the -jedt option is specified. Use both the -jedf and -jedt options to
define a specific time range. Specify the date in the dd/MM/yyyy-hh:mm:ss
format.

-jedt job_end_date_to
Specifies a time range starting from the date when the job completed. The
query is performed starting from the date when the dynamic workload broker
database was populated to the date you specified, unless the -jedf option is
specified. Use both the -jedf and -jedt options to define a specific time range.
Specify the date in the dd/MM/yyyy-hh:mm:ss format.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This option is
optional. If this option is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the setting defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 68.

Return Values

The jobquery command returns one of the following values:
0 Indicates that jobquery completed successfully.
< > 0 Indicates that jobquery failed.

Examples
1. To retrieve the job ID for a job named CLIJSB11, type the following command:

jobquery -usr john -pwd BCA12EDF -name CLIJSB11

The following output is displayed. The job ID is associated to the Job Identifier
key:
Call Job Dispatcher to query jobs. There are 10 Jobs found for your request
Details are as follows:

Job Name: CLIJSB11
Job Alias: alias
Job Identifier: 617c9bf7095787c83e1c36744e569ceb
Status: FAILED_running
Job EPR: http://lab135200.romelab.it.ibm.com:955
/JDServiceWS/services/Job
Job Submitter Name:
Submit Time: Tue May 23 15:41:54 CEST 2006
Start Time: Tue May 23 14:48:09 CEST 2006
End Time: Tue May 23 14:48:09 CEST 2006
Job Last Status Message:
Job Duration: PT0S
Returncode: 0
Job Resource Name: LAB237010
Job Resource Type: ComputerSystem

2. To retrieve all jobs submitted by test_user in submitted, resource allocation
failed, and canceled state, type the following command:

Chapter 10. Using the command line interface 79

jobquery -status 1,3,44 -submitter test_user

See Also

“jobsubmit command - Submitting jobs” on page 74

jobdetails command - Viewing details on jobs
Use the jobdetails command to view details on submitted jobs.

Syntax

jobdetails ?

jobdetails [-usr user_name -pwd password] -id job_ID [-v][-configFile
configuration_file]

Description

This command displays details on submitted jobs using the unique ID created at
job submission. To retrieve the job ID after submitting the job, use the jobquery
command specifying the -name parameter.

Options

? Displays help information.

-usr username
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-id job_ID
Specifies the unique job ID created at submission time. This parameter is
required.

-v
Displays job details.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the setting defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 68.

80 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Return Values

The jobdetails command returns one of the following values:
0 Indicates that jobdetails completed successfully.
< > 0 Indicates that jobdetails failed.

Examples
1. To view run information on a job with ID 617c9bf7095787c83e1c36744e569ceb,

type the following command:
jobdetails -id 617c9bf7095787c83e1c36744e569ceb

An output similar to the following is displayed:
Call Job Dispatcher to get the job properties.
Success return from Job Dispatcher.
Job Identifier: 617c9bf7095787c83e1c36744e569ceb
Job Name: CLIJSB11
Job Alias: alias
Job State: SUBMITTED
Job Submitter: null
Client Notification: http://lab135200.romelab.it.ibm.com:9550
/RAServiceWS/services/Allocation
Job Last Status Message:
Job Submit Time: Tue May 23 15:43:44 CET 2009
Job Start Time: Tue May 23 14:49:51 CET 2009
Job End Time: Tue May 23 14:49:51 CET 2009
Job Duration: PT0S
Job Return Code: 0
Job Resource Name: LAB237010
Job Resource Type: ComputerSystem
Job Usage Metric Name: StartTime
Job Usage Metric Type: null
Job Usage Metric Value: 1148388591000
Job Usage Metric Name: EndTime
Job Usage Metric Type: null
Job Usage Metric Value: 1148388591000

2. To submit the job with ID 617l9jw7095787g83f1c36744e569glf using the
configuration parameters specified in the custom_config.properties
configuration file, type the following command:
jobdetails -id 617l9jw7095787g83f1c36744e569glf -configFile
/opt/test/custom_config.properties

3. To view the status of a job with ID 617c9bf7095787c83e1c36744e569ceb, type
the following command:
jobdetails -id 617c9bf7095787c83e1c36744e569ceb

An output similar to the following is displayed:
Call Job Dispatcher to get the job properties.
Success return from Job Dispatcher.
Job ID: 617c9bf7095787c83e1c36744e569ceb
Status: SUBMITTED

4. To view details on the job with ID 617c9bf7095787c83e1c36744e569ceb using
the configuration parameters specified in the custom_config.properties
configuration file, type the following command:
jobdetails -jsdl 617c9bf7095787c83e1c36744e569ceb -configFile
/opt/test/custom_config.properties

See Also
v “jobsubmit command - Submitting jobs” on page 74
v “jobquery command - Performing queries on jobs” on page 76

Chapter 10. Using the command line interface 81

jobcancel command - Canceling jobs
Use the jobcancel command to cancel a submitted job.

Syntax

jobcancel ?

jobcancel [-usr user_name -pwd password] -id job_ID [-configFile configuration_file]

Description

This command cancels the running of submitted jobs using the unique ID created
at job submission. To retrieve the job ID after submitting the job, you can use the
jobquery command specifying the job name.

Options

? Displays help information.

-usr user_name
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-id job_ID
Specifies the unique job ID created at submission time. This parameter is
required.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 68.

Return Values

The jobcancel command returns one of the following values:
0 Indicates that jobcancel completed successfully.
< > 0 Indicates that jobcancel failed.

Examples
1. To cancel the running of a job with ID 617l9jq7037529f83x1w36185e569fwl, type

the following command:

82 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

jobcancel -id 617l9jq7037529f83x1w36185e569fwl

See Also

“jobsubmit command - Submitting jobs” on page 74

jobstore command - Managing job definitions
Use the jobstore command to manage job definitions.

Syntax

jobstore ?

jobstore [-usr user_name -pwd password]{[-create jsdl_file] | [-update jsdl_file] |
[-del job_definition_name] | [-get job_definition_name] | [-queryall] | [[
-queryname job_definition_name...] [-querydesc job_definition_desc...] [-queryowner
job_definition_owner...]]} [-configFile configuration_file }

Description

This command saves and updates JSDL files in the Job Repository. JSDL files are
saved in the database as job definitions with unique names. After saving JSDL files
in the database, you can perform the following operations on job definitions:
v Delete job definitions
v Print job definitions to standard output or save them to a file
v Perform queries on job definitions based on several attributes

You can submit job definitions using the jobsubmit command. For more
information about the jobsubmit command, see “jobsubmit command - Submitting
jobs” on page 74.

Options

? Displays help information.

-usr username
Specifies the user name for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
user name is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-create jsdl_file
Specifies the name and path to a JSDL file to be saved in the Job Repository
database. The JSDL file is saved as a job definition. The name for the job
definition is saved within the JSDL file and can be only modified by editing
the JSDL file. Delete and retrieve (get) operations are performed on the job
definition.

-update jsdl_file
Specifies the name and path to a JSDL file to be updated in the Job Repository
database. The JSDL file must be existing in the database.

Chapter 10. Using the command line interface 83

-del job_definition_name
Deletes a job definition from the Job Repository database.

-get job_definition_name
Prints the JSDL file contained in the job definition to standard output or to a
file you specify. You can use this command for performing minor editing on
job definitions.

-queryall
Performs a query without any filters. This query returns all job definitions
stored in the dynamic workload broker database.

-queryname job_definition_name
Performs a search on job definitions based on the job definition name. The job
definition name is unique. This parameter is case-sensitive. Wildcards (*, ?) are
supported.

-querydesc job_definition_desc
Performs a search on job definitions based on the job definition description.
Wildcards are supported.

-queryowner job_definition_owner
Performs a search on job definitions based on the user who created the job
definition.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information about the configuration file, see
“Command-line configuration file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the setting defined in this file, you can enter
the user name and password when typing the command. For more information
about the CLIConfig.properties file, see “Command-line configuration file” on page
68.

Return Values

The jobstore command returns one of the following values:
0 Indicates that jobstore completed successfully.
< > 0 Indicates that jobstore failed.

Examples
1. To retrieve all jobs created by user Administrator, type the following

command:
jobstore -queryuser Administrator

2. To update the job branch_update already stored in the Job repository database,
type the following command:
jobstore -update ../jsdl/branch_update.xml

See Also
v “jobsubmit command - Submitting jobs” on page 74
v “jobquery command - Performing queries on jobs” on page 76

84 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

jobgetexecutionlog command - Viewing job output
Use the jobgetexecutionlog command to view the output of a submitted job.

Syntax

jobgetexecutionlog ?

jobgetexecutionlog [-usr user_name -pwd password] -id job_ID -sizePage size Page
-offset offset [-configFile configuration_file]

Description

This command displays the job output for submitted jobs using the unique ID
created at job submission. To retrieve the job ID after submitting the job, you can
use the jobquery command specifying the job name. You can also specify the
length of the output page to be displayed and the number of the byte in the job
output from where you want to start displaying the output.

Options

? Displays help information.

-usr user_name
Specifies the username for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
username is not defined in the CLIConfig.properties configuration file (with
the tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This parameter is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-id job_ID
Specifies the unique job ID created at submission time. This parameter is
required.

-sizePage size Page
Specifies the number of bytes to be displayed in the job output page.

-offset offset
Specifies the number of the first byte to be displayed in the job output page.
This option can be used to view large job outputs.

-configFile configuration_file
Specifies the name and path of a custom configuration file. This parameter is
optional. If this parameter is not specified, the default configuration file is
assumed. For more information on the configuration file, see “Command-line
configuration file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can enter
the user name and password when typing the command. For more information on
the CLIConfig.properties file, see “Command-line configuration file” on page 68.

Chapter 10. Using the command line interface 85

Return Values

The jobgetexecutionlog command returns one of the following values:
0 Indicates that jobgetexecutionlog completed successfully.
< > 0 Indicates that jobgetexecutionlog failed.

Examples
1. To view the output of a job with ID 617l9jq7037529f83x1w36185e569fwl

displaying the output in pages containing 400® bytes starting from the first byte
in the page, type the following command:
jobgetexecutionlog -id 617l9jq7037529f83x1w36185e569fwl -sizePage 400 -offset 1

The following output is displayed:
Call Job Dispatcher to get the output of the job
Success returned from Job Dispatcher
Get Execution Log request submitted
The Execution Log Page requested is:
al 5
drwxrwxrwx 7 root root 200 Aug 24 16:39 .
drwxrwxrwx 8 root root 208 Aug 22 15:11 ..
drwxrwxrwx 6 root root 248 Aug 22 15:11 eclipse
-rw-rw-rw- 1 root root 139 Aug 24 16:39 jsdef
drwxr-xr-x 2 root root 552 Aug 24 16:54 logs
drwxrwxrwx 5 root root 240 Aug 22 15:11 rcp
drwxrwxrwx 3 root root 72 Aug 22 15:11 shared
drwxrwxrwx 3 root root 80 Aug 22 15:11 workspace

The file size is:
381

See Also
v “jobsubmit command - Submitting jobs” on page 74
v “jobquery command - Performing queries on jobs” on page 76

movehistorydata command - Maintaining the database tables

You can use the movehistorydata command when access to the database becomes
too slow.

This problem might be due to a huge number of records being present in the
database, for example when bulk job submissions are performed.

You can use the movehistorydata command to move the data present in the Job
Repository to the archive tables. When you run this command, the jobs are moved
to the following tables in the database:

JOA_JOB_ARCHIVES
Contains archived job instances

JRA_JOB_RESOURCE_ARCHIVES
Contains resource information related to the jobs

MEA_METRIC_ARCHIVES
Contains metrics collected for the jobs

For more information on historical tables, refer to the Tivoli Workload Scheduler:
Administration Guide, SC23-9113.

86 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Note: Depending on the number of jobs and accesses to the database, a cleanup
operation might cause some peaks in memory or CPU usage.

If your Tivoli Workload Scheduler database is DB2 and you use FIPS security, to
run this command successfully you need to have the
com.ibm.tdwb.dao.rdbms.useSSLConnections option set to TRUE in the
CLIConfig.properties file.

Syntax

movehistorydata ?

movehistorydata -dbUsr db_user_name-dbPwd db_user_password
[-successfulJobsMaxAge successfulJobsMaxAge [-notSuccessfulJobsMaxAge
notSuccessfulJobsMaxAge][-archivedJobsMaxAge archivedJobsMaxAge]]

Description

This command performs a cleanup operation on the Job Repository database.
Based on the values you specify, information on submitted jobs is moved to the
archive database and the information in the archive database is deleted.

Use this command to temporarily override the settings defined in the
JobDispatcherConfig.properties file, when unexpected events require an
immediate database cleanup. The settings in the JobDispatcherConfig.properties
file remain unchanged. For more information on the
JobDispatcherConfig.properties file, refer to the Tivoli Workload Scheduler:
Administration Guide.

Options

? Displays help information.

-dbUsr db_user_name
Specifies the username for a user authorized to perform operations on the
database server.

-dbPwd db_user_password
Specifies the password for a user authorized to perform operations on the
database server.

-successfulJobsMaxAge successfulJobsMaxAge
Specifies how many hours jobs completed successfully or canceled must be
kept in the Job Repository database before being archived. The default value is
240 hours, that is ten days.

-notSuccessfulJobsMaxAge notSuccessfulJobsMaxAge
Specifies how many hours jobs completed unsuccessfully or in unknown status
must be kept in the Job Repository database before being archived. The default
value is 720 hours, that is 30 days.

-archivedJobsMaxAge archivedJobsMaxAge
Specifies how many hours jobs must be kept in the archive database before
being archived. The default value is 720 hours, that is 30 days.

Return Values

The movehistorydata command returns one of the following values:
0 Indicates that movehistorydata completed successfully.

Chapter 10. Using the command line interface 87

|
|
|
|

|
|
|
|

|
|
|

< > 0 Indicates that movehistorydata failed.

Examples
1. To move to the archive database all successful jobs completed in the last 40

hours, type the following command:
movehistorydata -dbUsr halmst -dbPwd dgordon -successfulJobsMaxAge 40

2. To move to the archive database all jobs in all supported statuses and remove
from the archive database all jobs older than 700 hours, type the following
command:
movehistorydata -dbUsr halmst -dbPwd dgordon -successfulJobsMaxAge 0

-notSuccessfulJobsMaxAge 0 -archivedJobsMaxAge 700

resource command - Working with resources

You can use the resource command to create, modify, associate, query, or set
resources online or offline.

Syntax

resource ?

resource [-usr user_name -pwd password]
{
[-create{ -logical name -type type[-quantity quantity][-offline] |
-group name[-offline]}]
|
[-delete{-logical name |
-group name }]
|
[-update{-computer name{[-setOnline | -setOffline]} |
-logical name
[-setName name]
[-setType type]
[-setQuantity quantity]
[-setOnline | -setOffline]
[-addComputer name |
-addComputerByID ID |
-removeComputer name |
-removeComputerByID ID]
|
-group name
[-setName name]
[-setOnline | -setOffline]
[-addComputer name |
-addComputerByID ID |
-removeComputer name |
-removeComputerByID ID |
-addLogical name |
-removeLogical name]}]
|
[-query{-computer name [-v] |
-logical name [-v] |
-group name [-v]}
[-configFile configuration_file]
}

88 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

|

Description

Use this command to work with computers, logical resources, and resource groups.
In particular it is possible to:
v Create, update, list, and delete logical resources or groups
v Create logical resources, associate them to computers, define groups of logical

resources or computers, and set them online or offline
v Retrieve and update resource properties using the query and the update options
v Discover the list of computers associated to a logical resource performing a

detailed query on the logical resource
v Change the association between computers and logical resources
v Set resources online or offline and query computer properties

Options

? Displays help information.

-usr user_name
Specifies the user name for a user authorized to perform operations on the
command line. This option is required when security is enabled and the user
name is not defined in the CLIConfig.properties configuration file (with the
tdwb_user keyword).

-pwd password
Specifies the password for a user authorized to perform operations on the
command line. This option is required when security is enabled and the
password is not defined in the CLIConfig.properties configuration file (with
the tdwb_pwd keyword).

-create -logical name -type type
Creates the logical resource with the specified name and type. It is also
possible to set a specific quantity or set the resource offline by using optional
parameters in the following way:

-create -logical name -type type-quantity quantity -offline

-create -group name
Creates the resource group with the specified name. It is also possible to set it
offline by using the -offline optional parameter in the following way:

-create -group name -offline

-delete -logical name
Deletes the logical resource with the specified name.

-delete -group name
Deletes the resource group with the specified name.

-update -computer name
Updates the computer system with the specified name. You can set the
computer online or offline as follows:

-update -computer name -setOnline
Sets the specified computer online.

-update -computer name -setOffline
Sets the specified computer offline.

-update -logical name
Updates the specified logical resource. You can update the properties and
status of a resource in the following ways:

Chapter 10. Using the command line interface 89

|
|

|

|
|

-update -logical name -setName name
Updates the name of the specified logical resource.

-update -logical name -setType type
Updates the type of the specified logical resource.

-update -logical name -setQuantity quantity
Updates the quantity of the specified logical resource.

-update -logical name -setOnline
Sets online the specified logical resource.

-update -logical name -setOffline
Sets offline the specified logical resource.

You can change the association between a logical resource and a computer in
the following ways:

-update -logical name -addComputer name
Associates the specified logical resource to the computer with the specified
name.

-update -logical name -addComputerByID ID
Associates the specified logical resource to the computer with the specified
ID.

-update -logical name -removeComputer name
Removes the association between the specified logical resource and the
computer with the specified name.

-update -logical name -removeComputerByID ID
Removes the association between the specified logical resource and the
computer with the specified ID.

-update -group name
Updates the specified resource group. You can update the properties and status
of a resource group in the following ways:

-update -group name -setName name
Updates the name of the specified resource group.

-update -group name -setOnline
Sets online the specified resource group.

-update -group name -setOffline
Sets offline the specified resource group.

You can add and remove logical resources or computers to and from a resource
group in the following ways:

-update -group name -addLogical name
Adds the logical resource with the specified name to the resource group.

-update -group name -removeLogical name
Removes the logical resource with the specified name from the resource
group.

-update -group name -addComputer name
Adds the computer with the specified name to the resource group.

-update -group name -addComputerByID ID
Adds the computer with the specified ID to the resource group.

90 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

-update -group name -removeComputer name
Removes the computer with the specified name from the resource group.

-update -group name -removeComputerByID ID
Removes the computer with the specified ID from the resource group.

-query -computer name
Retrieves the following properties of the specified computer:
v Name
v Computer ID
v Operating system name
v Operating system type
v Operating system version
v Status
v Availability status

Retrieves the following additional properties if you add the -v option:
v Physical memory
v Virtual memory
v CPU utilization
v Free physical memory
v Free virtual memory
v Free swap space
v Allocated physical memory
v Allocated virtual memory
v Allocated swap space
v Processors number
v Allocated processors number
v Processor type
v Processor speed
v Manufacturer
v Model
v Serial number

You can use the asterisk (*) as a wildcard character in the following ways:

As a single parameter
You must enclose it between double quotes, for example:
C:\IBM\TWA\TDWB\bin>resource –query –computer "*"

This command returns a list of all existing computers.

To complete a computer name
You must enclose the entire name between double quotes, for example:
C:\IBM\TWA\TDWB\bin> resource –query –computer "lab123*"

This command returns a list of all existing computers with a name
starting with lab123.

-query -logical name
Retrieves the name and the type of the specified logical resource. Retrieves the
following additional properties if you add the -v option:
v Status

Chapter 10. Using the command line interface 91

v Quantity
v Current allocation
v Computers list

You can use the asterisk (*) as a wildcard character in the following ways:

As a single parameter
You must enclose it between double quotes, for example:
C:\IBM\TWA\TDWB\bin>resource –query –logical "*"

This command returns a list of all existing logical resources.

To complete a resource name
You must enclose the entire name between double quotes, for example:
C:\IBM\TWA\TDWB\bin> resource –query –logical "myRes*"

This command returns a list of all existing logical resources with a
name starting with myRes.

-query -group name
Retrieves the name and the status of the specified resource group. Retrieves the
list of computers and of logical resources contained in the resource group if
you use the –v option.

You can use the asterisk (*) as a wildcard character in the following ways:

As a single parameter
You must enclose it between double quotes, for example:
C:\IBM\TWA\TDWB\bin>resource –query –group "*"

This command returns a list of all existing resource groups.

To complete a resource group name
You must enclose the entire name between double quotes, for example:
C:\IBM\TWA\TDWB\bin> resource –query –group "myResGrou*"

This command returns a list of all existing resource groups with a
name starting with myResGrou.

-configFile configuration_file
Specifies the name and the path of a custom configuration file. This keyword is
optional. If you do not specify it, the default configuration file is assumed. For
more information on the configuration file, see “Command-line configuration
file” on page 68.

Authorization

The user name and password for the command are defined in the
CLIConfig.properties file. To override the settings defined in this file, you can
enter the user name and the password when you type the command. For more
information on the CLIConfig.properties file, see “Command-line configuration
file” on page 68.

Return Values

The resource command returns one of the following values:
0 Indicates that the command completed successfully.
< > 0 Indicates that the command failed.

92 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Examples
v To create a logical resource named myApplication, of type Applications, type the

following command:
resource.bat -usr john -pwd BXVFDCGS -create -logical myApplication
-type Applications

The following output is displayed:
AWKCLI153I Logical resource "myApplication" created.

v To update the quantity of the logical resource named myApplication, type the
following command:
resource.bat -update -logical myApplication -setQuantity 5
-usr john -pwd BXVFDCGS

The following output is displayed:
AWKCLI165I Logical resource "myApplication" updated.

v To add the relationship between a logical resource and a computer, type the
following command:
resource.bat -update -logical myApplication -addComputer myComputer
-usr john -pwd BXVFDCGS

The following output is displayed:
AWKCLI165I Logical resource "myApplication" updated.

v To retrieve details of a logical resource named myApplication, type the following
command:
resource.bat -usr john -pwd BXVFDCGS -query -logical myApplication –v

The following output is displayed:
AWKCLI171I Calling the resource repository to perform a query on resources.

AWKCLI172I "1" logical resources were found for your query.
Details are as follows:

Resource Name:myApplication
Resource Type:Applications
Resource Status:Online
Resource Quantity:5
Resource Current Allocation:0
Computers List:

Computer Name:myComputer
Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer Status:Online
Computer Availability Status:Unavailable

v To set the logical resource named myApplication offline, type the following
command:
resource.bat -usr john -pwd BXVFDCGS -update -logical myApplication
-setOffline

The following output is displayed:
AWKCLI165I Logical resource "myApplication" updated.

v To set the computer named myComputer offline, type the following command:
resource.bat -usr john -pwd BXVFDCGS -update -computer myComputer
-setOffline

The following output is displayed:
AWKCLI165I Computer "myComputer" updated.

Chapter 10. Using the command line interface 93

v To retrieve basic properties of the computer named myComputer, type the
following command:
resource.bat -usr john -pwd BXVFDCGS -query -computer myComputer

The following output is displayed:
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI174I "1" computers were found for your query.
Details are as follows:

Computer Name: myComputer
Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer OS Name: Microsoft Windows XP Professional English (United States) version
Computer OS Type:Windows XP
Computer OS Version:5
Computer Status:Offline
Computer Availability Status:Unavailable

v To retrieve detailed properties of the computer named myComputer, type the
following command:
resource.bat -usr john -pwd BXVFDCGS -query -computer myComputer -v

The following output is displayed:
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI174I "1" computers were found for your query.
Details are as follows:

Computer Name: myComputer
Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer OS Name:Microsoft Windows XP Professional English (United States) version
Computer OS Type:Windows XP
Computer OS Version:5
Computer Status:Offline
Computer Availability Status:Unavailable
Computer details:

Physic memory = 2095536.0
Virtual memory = 3513788.0
Cpu utilization = 16.0
Free physic memory = 947972.0
Free virtual memory = 2333484.0
Free swap space = 52.0
Allocated physic memory = 0.0
Allocated virtual memory = 0.0
Allocated swap space = 0.0
Processors number = 1.0
Allocated processors number = 0.0
Processor type = x86
Processor speed = 1995.00
Manufacturer = IBM
Model = 2668F8G
Serial number = L3WZYNC

v To retrieve detailed properties of the logical resource named geneva, including
the list of associated computers, type the following command:
resource.bat -usr john -pwd BXVFDCGS -query -logical geneva -v

The following output is displayed:
Setting CLI environment variables....
AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI172I "1" logical resources were found for your query.
Details are as follows:

94 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

|
|

|

|

|
|
|
|
|
|

Resource Name:geneva
Resource Type:prod_wks
Resource Status:Online
Resource Quantity:1
Resource Current Allocation:0
Computers List:

Computer Name:bd_ff139_1
Computer ID:666AADE61CBA11E0ACBECD0E6F3527DE
Computer Status:Online
Computer Availability Status:Available
AWKCLI171I Calling the resource repository to perform a query on resources.

v To create a resource group named myGroup, type the following command:
resource.bat -usr john -pwd BXVFDCGS -create -group myGroup

The following output is displayed:
AWKCLI153I Resource group "myGroup" created.

v To retrieve basic properties of a resource group named myGroup, type the
following command:
resource.bat -query -group myGroup

The following output is displayed:
Setting CLI environment variables....

AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI173I "1" groups were found for your query.
Details are as follows:

Group Name:myGroup
Group Status:Online

v To add the computer named myComputer to a resource group named myGroup,
type the following command:
resource.bat -update -group myGroup -addComputer myComputer

The following output is displayed:
Setting CLI environment variables....

AWKCLI165I Resource Group "myGroup" updated.

v To retrieve details of a resource group named myGroup, type the following
command:
resource.bat -query -group myGroup -v

The following output is displayed:
Setting CLI environment variables....

AWKCLI171I Calling the resource repository to perform a query on resources.
AWKCLI173I "1" groups were found for your query.
Details are as follows:

Group Name:myGroup
Group Status:Online
Computers List:
Computer Name:myComputer

Computer ID:D656470E8D76409F9F4FDEB9D764FF59
Computer Status:Online

Computer Availability Status:Unavailable

Resources List:

Chapter 10. Using the command line interface 95

|
|
|
|
|
|
|
|
|
|
|

|

Using the resource command from an agent
You can create and manage resources and groups of resources and computers from
Tivoli Workload Scheduler agents other then on the master domain manager.

Enabling the resource command

To enable this feature you must:
1. Add the runtime for Java jobs when installing the agent. See information on

how to install the agent in the Planning and Installation manual.
2. Configure the CLIConfig.properties file. See “Configuring the local

CLIConfig.properties file.”
3. Run the resource command. See “Running the resource command.”

For this purpose an additional instance of the CLIConfig.properties file is
installed on every agent. If you intend to run the resource command from an
agent, you must configure the CLIConfig.properties locally.

Configuring the local CLIConfig.properties file

When you install the agent, a local copy of CLIConfig.properties is automatically
installed and partially configured on your agent in the following path:
TWA_home/TWS/TDWB_CLI/config

To run the resource.bat or resource.sh command from the agent, customize the
following keywords of the local CLIConfig.properties file:

ITDWBServerHost
Specify the IP address or the hostname of the master domain manager.

ITDWBServerPort
Specify the number of the WebSphere Application Server HTTP port.

ITDWBServerSecurePort
Specify the number of the WebSphere Application Server HTTPS port.

tdwb_user
Specify the user name for a user authorized to perform operations on
dynamic workload broker when security is enabled. This user must be
previously defined on IBM WebSphere. For more information on security
considerations, refer to Tivoli Workload Scheduler: Administration Guide,
SC23-9113.

tdwb_pwd
Specify the password for a user authorized to perform operations on
dynamic workload broker when security is enabled. This password must
be previously defined on IBM WebSphere. For more information on
security considerations, refer to Tivoli Workload Scheduler: Administration
Guide.

Running the resource command

To run the command, enter:
On Windows:

resource.bat
On UNIX:

resource.sh

96 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Notices

Provides the legal information which governs your use of this guide.

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this publication
in other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this publication. The furnishing of this publication does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain
transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2009, 2011 97

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases payment of a fee.

The licensed program described in this publication and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

Trademarks
Provides information about the trademarks and registered trademarks of IBM and
of the companies with which IBM has trademark acknowledgement agreements.

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at "Copyright and trademark information" at http://www.ibm.com/legal/
copytrade.shtml.

Intel is a trademark of Intel Corporation in the United States, other countries, or
both.

98 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, and service names may be trademarks or service marks
of others.

Notices 99

100 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

Index

A
accessibility x
affine jobs

defining 3, 75
submitting 61

affinity
defining 27, 61, 75
definition 3
syntax 27

affinity relationship
defining 27

affinity with job alias 27
affinity with job ID 27
affinity with job name 27
alias

creating when submitting 61
defining when submitting 61

application job plug-ins
scheduling 7

archiving
job instances 86

authorization 3

B
broker jobs promotion 11
broker promotion variables 11

C
call to a Web service 9, 12

sample JSDL files 10
canceling TWS jobs

kill command 31
checking

scan results 34
CLIConfig.properties file

command-line configuration 68
command line

command location 67
command usage 67
managing jobs 67
setting the environment 67

command line job statuses 62
command line syntax 68
command-line configuration

CLIConfig.properties file 68
commands

exportserverdata 72
importserverdata 73
jobcancel 82
jobdetails 80
jobgetexecutionlog 85
jobquery 76
jobstore 83
jobsubmit 74
movehistorydata 86
resource 88

computer
resource 47

computer association
retrieving 88

computers
configuring 33
physical resources 34

computers associated to a resource
retrieving 88

conman command
monitoring TWS jobs 31
viewing job output 31

consumable resource
resource quantity 43, 50

conventions used in publications x
creating job definitions

templates 51
creatng jobs 41
credentials 43
critical dynamic job promotion 11
critical dynamic workload broker

jobs 21
critical job

prioritization 21
promotion 21

critical job priority
enhancing 21

critical path
job promotion 21

crucial dynamic jobs 11

D
database data extract 9, 10, 12
database data validation 9, 10, 12
database operations 9, 12

sample JSDL files 10
database stored procedure

database jobs 9, 12
sample JSDL files 10

sample JSDL files 10
DB tables maintenance

movehistorydata command 86
defining user preferences 3
dynamic agents 7, 9
dynamic capabilities 7
dynamic job promotion 11
dynamic pool 7
dynamic pools

scheduling job types with advanced
options 7, 9

dynamic scheduling 7
job types with advanced options 7,

10
dynamic workload broker

critical jobs 21
critical path 21

dynamic workload broker instance
URI 72, 73

dynamic workload broker jobs
prioritizing 21

Dynamic Workload Console
accessibility x

E
editing job definitions 55, 56
education x
environment variables 51

job promotion 11
executable jobs 9, 10
existing jobs

improving 11
existing jobs with dynamic

capabilities 11
exportserverdata command 72

F
file system

related resource 47
file transfer jobs 9, 12

sample JSDL files 10
file transfer operations 9, 12

sample JSDL files 10

G
generic Java job 9, 12

template 10
generic Web service call 9, 12

template 10
global resources

definition 49
glossary x

I
IBM i jobs 9, 10
important dynamic jobs 11
importserverdata command 73

J
J2EE jobs 9, 10
Java jobs 9, 12

sample JSDL files 10
Java operations 9, 12

sample JSDL files 10
job alias

alternative to job ID 61
defining 75

job association
defining 27

Job Brokering Definition Console 43
editing job definitions 55, 56, 58, 59
writing job definitions 41

job canceling
TWS kill command 31

job definition
creating 55, 56, 58, 59

job dependency
defining 27

© Copyright IBM Corp. 2009, 2011 101

job ID
jobcancel command 77
jobdetails command 77
jobquery command 77
jobstatus command 77
retrieving 77

job instances
archiving 86
showing 63
status 63

job monitoring 63
job priority

assigning 43
job promotion 21

environment variables 11
job promotion on dynamic pools 11
job status mapping 31

TWS job status 31
job statuses

job statuses
monitoring 62

mapping 62
supported operations 62

job submission 63
Job Submission Description

Language 43
job targets

defining 43, 47
job types 9, 12

template 10
job types with advanced options 7, 9,

11, 12
sample JSDL files 10
scheduling dynamically 7
scheduling statically 7
template 10

job variables 25
creating 61, 62
editing 61, 62

jobcancel command 82
jobdetails command 80
jobgetexecutionlog command 85
jobquery command 76
jobs

allocation 43, 47
creating 43, 47
defining 43, 47
jobs

consumable properties 47
optimizable properties 47

optimization 43, 47
scheduling 43
using variables 43

jobstore command 83
jobsubmit command 74
jsdl

template 51
JSDL 43

K
kill command

job canceling 31

L
load-balancing policies 43

defining 50
logical resource

related resource 47
logical resource association

retrieving 88
logical resource information

retrieving 88
logical resources

configuring 33
creating 36
defining 36
software information 33

M
monitoring TWS jobs

conman command 31
movehistorydata command 86
MSSQL jobs 9, 10

N
network system

related resource 47
new

in this publication ix
in this release ix

new executor 12
new executors 9

scheduling 7
template 10

new plug-ins 9, 10, 12
template 10

notices 97

O
old jobs

improving 11
old jobs with dynamic capabilities 11
operating system

related resource 47
optimization policies 43

P
physical resources

checking 34
PL/SQL support 9
pool 7
pools

scheduling job types with advanced
options 7, 9

priority 43
assigning to jobs 43

publication
who should read ix

publications x

R
read the publication, who should ix

related resource
file system 47
logical resource 47
network system 47
operating system 47

resource
computer 47

resource command 88
running from agent

CLIConfig.properties setup 96
requirement 96

resource groups
creating 38
definition 33

resource quantity
consumable resource 43, 50
defining 43, 50

resource types
consumable 47

resources
optimizable 47

return codes
database job 10
Java job 10
job executor 10
job with advanced options 10
web services job 10

roles 3

S
scan results 34
scheduling job types with advanced

options 7, 9
specific job types 9, 12

sample JSDL files 10
standard jobs

improving 11
standard jobs with dynamic

capabilities 11
submitted jobs

showing 63
syntax

command line 68

T
technical training x
Tivoli technical training x
Tivoli Workload Scheduler agent

computer scan 33
environment scan 33

trademarks 98
training

technical x
TWS job status

job status mapping 31
TWS kill command

job canceling 31

U
user credentials 43
user preferences 3
users 3
using variables 51

102 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

V
variable management 25
variables 43

defining 62
defining and using 25
Dynamic workload broker 25

variables in job
defining at submission 62
defining at submissions 61
defining in job definition 51
editing at submission 61, 62

viewing job output
conman command 31

W
Web Console

roles 3
user groups 3
users 3

Web Console job statuses 62
Web service jobs 9, 12

sample JSDL files 10
welcome page 3
what is new

in this publication ix
in this release ix

workload service assurance 21
writing job definitions

templates 51

X
XA jobs 9, 10

Index 103

104 IBM Tivoli Workload Scheduler: Scheduling Workload Dynamically

����

Product Number: 5698-WSH

Printed in USA

SC23-9856-02

Sp
in
e
in
fo
rm
at
io
n:

IB
M

Ti
vo

li
W

or
kl

oa
d

Sc
he

du
le

r
Ve

rs
io

n
8.

6
Sc

he
du

lin
g

W
or

kl
oa

d
Dy

na
m

ic
al

ly
�
�

�

	Contents
	Figures
	Tables
	About this guide
	What is new in this release
	What is new in this publication
	Who should read this publication
	Publications
	Accessibility
	Tivoli technical training
	Support information

	Chapter 1. Understanding dynamic workload scheduling
	Interfaces
	Authorization and roles
	Managing users and roles
	Authorization with WebSphere® global security

	Adding dynamic scheduling capabilities to your environment
	Advantages of job types with advanced options
	Creating job types with advanced options
	Return codes
	Promoting jobs scheduled on dynamic pools
	Adding dynamic capabilities to existing Tivoli Workload Scheduler jobs
	A business scenario on dynamic capability

	A business scenario
	The business
	The challenge
	The solution

	Chapter 2. Using Tivoli Workload Scheduler variables in dynamic workload broker jobs
	Chapter 3. Using variables in jobs
	Chapter 4. Defining affinity relationships
	Chapter 5. Creating Tivoli Workload Scheduler jobs managed by dynamic workload broker
	Chapter 6. Monitoring and canceling jobs
	Chapter 7. Identifying the resources for jobs
	Checking physical resources on computers
	Creating logical resources
	Creating resource groups

	Chapter 8. Writing JSDL definitions with the Job Brokering Definition Console
	Job definitions
	Resources in the job definition
	Using variables in job definitions
	Using JSDL job definition templates
	Scenarios for creating job definitions
	Scenario: Creating a job definition using a computer resource group
	Scenario: Creating a job definition using a logical resource group
	Scenario: Creating a job definition for a job to run on x86 processors
	Scenario: Creating a job definition for a script to run on a specific operating system
	Scenario: Alternative operating system requirements

	Chapter 9. Submitting and tracking jobs
	Submitting jobs with affinity relationships
	Submitting a job with affinity from the command line

	Submitting jobs with variables
	Submitting a job with variables from the command line

	Job statuses
	Monitoring submitted jobs

	Chapter 10. Using the command line interface
	Command-line configuration file
	exportserverdata command - downloading the list of workload broker instances from the database
	importserverdata command - uploading the list of workload broker instances to the database
	jobsubmit command - Submitting jobs
	jobquery command - Performing queries on jobs
	jobdetails command - Viewing details on jobs
	jobcancel command - Canceling jobs
	jobstore command - Managing job definitions
	jobgetexecutionlog command - Viewing job output
	movehistorydata command - Maintaining the database tables
	resource command - Working with resources
	Using the resource command from an agent

	Notices
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

